ROAD TRAFFIC CASUALTY CRASHES IN NEW SOUTH WALES

Statistical Statement for the year ended 31 December 2019

Prepared by the Centre for Road Safety, Transport for NSW
7 Harvest Street
Macquarie Park NSW 2113

Internet: Centre for Road Safety website

You can provide feedback via the Centre for Road Safety Contact us form.
(https://roadsafety.transport.nsw.gov.au/contactus)

ISSN 0155-2546
© State of NSW through Transport for NSW
Extracts from this publication may be reproduced provided the source is fully acknowledged.

Contents

ACKNOWLEDGEMENTS 6
PREFACE 7
Scope of crash statistics 7
How crash data are processed 8
Health data linkage process 8
Special notes 9
Criteria for determining speeding and fatigue involvement 11
Definitions and explanatory notes 12
INTERPRETING TABLES CORRECTLY 14
SERIOUS INJURIES (ALL HOSPITALISATIONS) 15
SUMMARY DATA FOR 2019 16
MAIN POINTS FOR 2019 17
Figure 1 Serious injury (all hospitalisations) rate per 10,000 vehicles, 10,000 licence holders and 100,000 population for years 2005 to 2019 in NSW 18
Table 1 Serious injuries (all hospitalisations), year, road user class 19
Table 2 Serious injuries (all hospitalisations), year, age 20
Table 3 Serious injuries (all hospitalisations), year, gender 21
Table 4 Serious injuries (all hospitalisations), year, quarter 22
CASUALTY CRASH AND CASUALTY TRENDS 23
SUMMARY DATA FOR 2019 25
MAIN POINTS FOR 2019 26
Table 5 Trends in New South Wales 1950-2019 27
Figure 2 Fatality rate per 10,000 vehicles, 10,000 licence holders and 100,000 population for years 1950 to 2019 in NSW 29
Table 6 Fatality comparison with other Australian States and other countries 30
Table 7 Deaths within NSW, causes of death, sex, age for 2018 31
Table $8 \quad$ Fatalities, year, month 32
Table 9 Casualties, year, road user class, degree of casualty 34
ROAD CASUALTY CRASHES IN 2019 38
Time distribution of crashes
Table 10 Crashes, casualties, holiday periods, degree of crash, degree of casualty 39
Table 11a Fatal crashes, time period, day of week 40
Table 11b Serious injury crashes, time period, day of week 40
Table 11c Moderate injury crashes, time period, day of week 41
Table 11d Minor/Other injury crashes, time period, day of week 41
Table 11e Total casualty crashes, time period, day of week 42
Table 12 Crashes, time period, degree of crash 43
Crash types
Figure 3a Fatal crashes, road user movement 45
Figure 3b Serious injury crashes, road user movement 46
Figure 3c Total casualty crashes, road user movement 47
Table 13 Crashes, object hit in first impact, degree of crash 48
Table 14 Single motor vehicle crashes, vehicle type, degree of crash 48
Motor vehicle types
Table 15a Crashes, type of crash, degree of crash 49
Table 15b Casualties, type of crash, degree of casualty 50
Table 16 Motor vehicles involved and involvement rate, vehicle type, degree of crash 51
Factors \& errors possibly contributing to crashes
Table 17 Crashes, factors, degree of crash 52
Table 18 Crashes, degree of crash, alcohol involvement, time period 53
Table 19 Crashes, degree of crash, alcohol involvement, urbanisation 54
Table 20a Crashes, alcohol involvement, degree of crash 55
Table 20b Crashes, speeding involvement, degree of crash 55
Table 20c Crashes, fatigue involvement, degree of crash 55
Controllers in crashes
Table 21 Motor vehicle controllers involved, degree of crash, road user class, sex, age
a Degree of crash: Fatal 56
b Degree of crash: Serious injury 57
c Degree of crash: Moderate injury 58
d Degree of crash: Minor/Other injury 59
e Degree of crash: All casualty crashes 60
Table 22 Motor vehicle controllers involved, road user class, licence status, degree of crash 61
Table 23 Motor vehicle controllers involved, degree of crash, blood alcohol concentration, sex, age
a Degree of crash: Fatal 62
b Degree of crash: Serious injury 63
c Degree of crash: Moderate injury 64
d Degree of crash: Minor/Other injury 65
e Degree of crash: All casualty crashes 66
Table 24 Speeding motor vehicle controllers involved, degree of crash, sex, age 67
Table 25 Fatigued motor vehicle controllers involved, degree of crash, sex, age 68
Location and distribution of crashes
Table 26a Crashes, location type, degree of crash 69
Table 26b Crashes, feature of location, degree of crash 69
Table 27 Crashes, area, speed limit, degree of crash 70
Table 28 Crashes, alignment, surface condition, degree of crash 71
Table 29 Crashes, casualties, region, local government area, degree of crash, degree of casualty 72
Table 30 Crashes, casualties, route, local government area, degree of crash, degree of casualty 84
CASUALTIES IN 2019 105
Road user class, age and sex distribution of casualties
Table 31 Casualties, road user class, degree of casualty 106
Table 32 Casualties, degree of casualty, road user class, sex, age
a Degree of casualty: Killed 107
b Degree of casualty: Seriously injured 108
c Degree of casualty: Moderately injured 109
d Degree of casualty: Minor/Other injured 110
e Degree of casualty: All casualties 111
Safety device for casualties
Table 33 Road vehicle casualties, road user class, safety device used, degree of casualty 112
Alcohol for casualties
Table 34 Motor vehicle controller casualties, degree of casualty, blood alcohol concentration, sex, age
a Degree of casualty: Killed 113
b Degree of casualty: Seriously injured 114
c Degree of casualty: Moderately injured 115
d Degree of casualty: Minor/Other injured 116
e Degree of casualty: All casualties 117
Table 35 Motor vehicle controller casualties, degree of casualty, road user class, blood alcohol concentration
a Degree of casualty: Killed 118
b Degree of casualty: Seriously injured 118
c Degree of casualty: Moderately injured 119
d Degree of casualty: Minor/Other injured 119
e Degree of casualty: All casualties 120
Table 36a Casualties, alcohol involvement in crash, degree of casualty 121
Table 36b Casualties, speeding involvement in crash, degree of casualty 121
Table 36c Casualties, fatigue involvement in crash, degree of casualty 121
REFERENCE INFORMATION 122
Demographic data
Table 37 New South Wales residents, age, sex 123
Table 38 Licence holders, age, sex 124
Vehicle information
Table 39 Vehicles on register, vehicle type 125

Acknowledgements

Transport for NSW wishes to thank the following -

- NSW Police Force for supply of road crash data.
- Spinal Cord Injuries Australia for providing coding and data entry service.
- NSW Ministry of Health for providing access to information in the NSW Admitted Patient Data Collection, NSW Emergency Department Data Collection and the NSW Registry of Births, Deaths and Marriages - Death registrations.
- Centre for Health Record Linkage for conducting the record linkage.
- Aboriginal Health \& Medical Research Council for supporting the ongoing data linkage project.
- Independent Hospital Pricing Authority for providing the International Classification of Diseases, 10th Revision, Australian Modification (ICD-10-AM) electronic code lists.
- The State Insurance Regulatory Authority (SIRA) for providing data on Compulsory Third Party insurance and Workers Compensation claims.
- The Lifetime Care and Support Authority for data on Lifetime Care participants.
- ACT Health Directorate for providing access to information in the ACT Admitted Patient Care and ACT Emergency Department Information System data collections.
- The Cause of Death Unit Record File (COD URF) provided by the Australian Coordinating Registry for the COD URF on behalf of the NSW Registry of Births, Deaths and Marriages, NSW Coroner and the National Coronial Information System.
- The Ambulance Service of NSW for providing data from the Computer-Aided Dispatch, electronic Medical Record and Patient Health Care Record systems.
- Forensic and Analytical Science Service, NSW Health for providing alcohol and drug test results.
- Department of Justice \& Regulation for and on behalf of the State of Victoria, for access to the National Coronial Information System for the verification of fatality information.
- NSW Institute of Trauma and Injury Management for access to information on injury outcomes for road crash related casualties that are considered seriously injured by Health.

This reporting of serious injury information forms part of the routine monitoring activity undertaken by Transport for NSW to improve road safety for the community. It was approved by the following ethics committees -

- Approved by the NSW Population \& Health Services Research Ethics Committee on 19th December 2013.
- Approved by the Aboriginal Health \& Medical Research Council Ethics Committee on 24th January 2014.
- Approved by the ACT Health Human Research Ethics Committee on 13th November 2013.
- Approved by the Calvary Public Hospital Bruce Human Research Ethics Committee on 20th September 2017.

Preface

Scope of crash statistics

This is the fifth Statistical Statement to report on the severity of injuries from road traffic crashes as identified from hospital records.

Crash statistics included in this Statistical Statement

The crash statistics included in this Statistical Statement are confined to those crashes which conform to the national guidelines for reporting and classifying road vehicle crashes and are based on the following criteria:

1 The crash was reported to the police

2 The crash occurred on a road open to the public
3 The crash involved at least one moving road vehicle
4 The crash involved at least one person being killed or injured.
Reports for some crashes are not received until well into the following year and after the annual crash database has been finalised. These amount to less than 1% of recorded crashes and are counted in the following year's statistics.
Crash data reported in this Statistical Statement were finalised and released in October 2020.

Casualty statistics included in this Statistical Statement

Fatality and injury statistics included in this Statistical Statement are identified from the police report of the crash as well as from hospital admission and emergency department records from NSW hospitals. All injuries reported in Tables 5 to 36, Figure 2 and Figures 3a to 3c are related to a crash conforming to the above criteria. Serious injuries reported in Tables 1 to 4 and Figure 1 include those identified in a police report of a crash as well as those identified from hospital records but not matched to a police report. The health data linkage process is explained further in a following section.

Criteria for reporting crashes in 2019

Prior to 2000, Section 8 (3) of the Traffic Act 1909 required a road crash in New South Wales to be reported to the police when any person was killed or injured or property damage over $\$ 500$ was sustained.
On 1 December 1999, the Traffic Act was repealed and replaced by new traffic legislation including the adoption of the Australian Road Rules. The new traffic legislation is found in the Road Transport (General) Act 1999 and the Road Transport (Safety and Traffic Management) Act 1999 and the regulations made under those Acts.

Rule 287 (3) of the Road Rules requires a crash to be reported to police when any person is killed or injured; when drivers involved in the crash do not exchange particulars; or when a vehicle involved in the crash is towed away.
As of 15 October 2014 NSW Police are not required to attend or investigate crashes in which a vehicle is towed away but no-one is injured or killed. These crashes are now required to be self-reported by involved parties to Police via the Police Assistance Line (PAL). If medical attention for an injury is sought more than 24 hours after a crash, this may also be reported via PAL as an injury crash.

How crash data are processed

The processing of crash data in New South Wales directly involves three organisations: the NSW Police Force, Spinal Cord Injuries Australia (SCIA) and Transport for NSW. Within Transport for NSW, the Centre for Road Safety (CRS) is the office responsible for the collation and dissemination of road crash data.

As of July 1997 information related to a road crash is entered directly into COPS (Computerised Operational Policing System) by a police officer, using details collected by them from the scene and witness accounts, or a Police Assistance Line (PAL) operator from details provided by the person reporting the crash. A sketch or site diagram of the crash site is completed for casualty crashes where a police officer attended the crash scene.

Completed and verified data for all crashes are transferred from COPS, on a weekly basis, and electronically forwarded to the CRS. The crash information and site diagrams are electronically available to SCIA, a business enterprise employing physically disabled people, contracted to the CRS to provide a coding and data entry service. Using the CrashLink Data Capture System, accurate location information is determined for each crash from the collision summary/narrative describing the crash and each data item is interpreted, validated and coded into consistent values. While less information is captured by PAL for self-reported crashes, these crashes are still coded in the same manner with capture of most data fields possible from the available information.
A computer checking process is performed to identify inconsistencies and errors which may have occurred during the data entry and validation phases. In addition, results of blood alcohol analyses and drug tests are regularly obtained from the NSW Health Pathology Forensic and Analytical Science Services. A further checking process is undertaken each quarter to identify and correct any anomalies in the data prior to completion.
In the case of a fatal crash, police officers send a preliminary report, generated from COPS, to the CRS. This provides initial information which is used to compile a preliminary database of fatal crashes. Hence, it is possible to monitor and analyse fatal crashes on a daily basis. A site diagram of the crash scene is usually supplied later, which enables location and crash details to be confirmed and updated if required. Final fatal crash data are captured upon receipt of the data regularly received electronically from the NSW Police Force.

The crash data are further enhanced with injury severities determined by the health data linkage process outlined below.

The CRS crash reporting database, known as CrashLink, is used extensively within Transport for NSW for monitoring and research work, strategic planning and the production of routine reports and analyses. Members of the public and organisations such as the Federal Department of Infrastructure, Regional Development and Cities, NSW Police Force, National Roads and Motorist's Association, Australian Bureau of Statistics and local governments also regularly use road crash information.

Health data linkage process

The inclusion of serious injury information into this Statistical Statement is possible due to the linkage of casualty records from crash reports with hospital records from NSW hospitals in a way which protects the privacy of those involved.

CRS has implemented a routine quarterly linkage (including historic data from 2005) which includes the following data collections -

1. NSW Ministry of Health data collections -
a. NSW Admitted Patient Data Collection - This collection records all admitted patient services provided by New South Wales Public Hospitals, Public Psychiatric Hospitals, Public MultiPurpose Services, Private Hospitals, and Private Day Procedures Centres.
b. NSW Emergency Department Data Collection - This collection provides information about patient presentations to the emergency departments of public hospitals in NSW.
c. NSW Mortality Data Collection from the NSW Register of Births, Deaths and Marriages - This collection contains mortality information for deaths occurring in NSW.
d. Cause of Death Unit Record File (COD URF) from the Australian Co-ordinating Registry is updated on an ad-hoc annual basis.
2. State Insurance Regulatory Authority data collections -
a. These collections provide information about Compulsory Third Party and workers compensation claimants injured in motor vehicle accidents in NSW.
3. Lifetime Care and Support Agency
a. This collection provides information about Lifetime Care participants severely injured on NSW roads.
4. CRS CrashLink crash reporting database.
5. NSW Ambulance data collections -
a. Computer-Aided Dispatch (CAD)
b. electronic Medical Record (eMR)
c. Patient Health Care Record (PHCR).
6. NSW Institute of Trauma and Injury Management data collection
a. This collection provides information on injury outcomes for road crash related casualties that are considered seriously injured by Health.

The record linkage is conducted in two parts. Firstly, the linkage of person records between the data collections is conducted by the Centre for Health Record Linkage (CHeReL). In bringing together these records, the CHeReL uses strict privacy preserving protocols which ensure the security of the data and confidentiality of the individuals and their related records. Only de-identified records are returned to the Centre for Road Safety.

This process includes -

1. Custodians of the data collections to be linked provide the CHeReL with an encrypted source record number and demographic details for each record in their dataset. Note that clinical data is not provided to the CHeReL.
2. The CHeReL links these records using probabilistic matching of the demographic details, and assigns a project person number for records that belong to the same person. The CHeReL person ID and the associated source record numbers form the CHeReL Master Linkage Key (MLK). The MLK provides a 'pointer' to records for a person in different datasets. The CHeReL sends each data custodian a list of Project specific Person Numbers (PPN) and the associated encrypted source record numbers for their database.

During the next stage, the records from the different data collections and crash data are linked. The respective data custodians provide input files which include PPNs and approved variables. The CRS project team load the files into a database and link all records from different datasets for a person using the PPN. Approved CRS researchers will only receive datasets where personal identifiers have been removed for analysis.

This process ensures that:

- CHeReL staff performing the linkage use demographic variables but do not have access to the clinical information about the individuals;
- Data custodians only have access to data within their data collections; and
- Researchers receive data which contains no identifying variables, or variables which provide a link back to the CHeReL MLK.

The future inclusion of data from other health data collections could potentially impact numbers presented in this Statistical Statement.

Special notes

Changed injury severity information from 2005

During 2020, data from a further two heath data collections were linked to CRS crash records as part of the Health Data Linkage program. Whilst the number of crashes reported did not change, the addition resulted in minor changes to the injury severity of a small proportion of CrashLink records between 2005 and 2018.

In mid-2017, NSW Health changed their policy on the reporting of hospital admissions by removing hospital admissions that were not admitted to the ward from the admissions data from 2018 onwards. NSW Health
subsequently republished their admission data to exclude all Emergency Department (ED) only admissions prior to 2018 to maintain consistency of trends. In order to maintain consistency of trends, CRS decided, as a result of these changes, to amend the linked crash data to align with the practices adopted by NSW Health resulting in a decrease in serious injury numbers from previously reported data.

In 2015, the first linkage of historical crash records with hospital records resulted in the identification of hospital admissions for persons previously identified by Police as uninjured drivers or riders. This extra information was used to enhance crash data from 2005 by including the additional injured people as casualties. This also has the effect of changing some towaway crashes to injury crashes. This resulted, a small increase in casualties per year for the years 2005 - 2014 as compared to previous reporting.

The total number of crashes reported each year has not been impacted by any of the above changes. . However, crash and casualty data reported prior to 2020 will no longer align with statistics reported in this statistical statement.

Tables 5 and 9 in this Statistical Statement include these updated data from 2005. Care must be taken when assessing trends over time from years prior to 2005 or from previously published statistical statements.
Serious injury data presented for 2005 are based on the date the crash occurred and differs from subsequent years which are based on when the crash was recorded. As such, total hospitalisations for 2005, as reported in Tables 1 to 4, are under-reported by approximately one per cent.

Pedal cycle crashes

In 2017 power assisted pedal cycles previously categorised as motorcycles were re-defined as pedal cycles. Riders of power assisted pedal cycles are now pedal cycle riders. This resulted in less than five casualties categorised as pedal cycle riders which would have been motorcycle riders in previous years.
It is recognised that a substantial proportion of non-fatal pedal cycle crashes are not reported to police. As the NSW Police Force is the only source of crash notification used in this statement, statistics relating to pedal cycle crashes may not accurately reflect the situation. A serious injury of a pedal cyclist however may be identified from hospital records alone and will be included in the serious injury section of the Statistical Statement.

Other historical data changes

Due to changes over time in the COPS and CrashLink systems, there may be inconsistencies in the reporting of some data fields.

The introduction of the Graduated Licensing System in 2000 resulted in an increase in the number of Provisional Licence holders.

In 2010 an improvement was made to the identification of contributing factors. This improvement is reflected mainly in Tables 13 and 17. In 2014 a system change made it possible for more than one factor to be captured for each vehicle. Table 17 now counts all contributing factors so slight increases in the number of crashes with factors recorded are expected.
The introduction of self-reporting for crashes has impacted trends in the crash data from October 2014. Crash records collected directly from involved parties contain less descriptive data making the determination of attributes such as road user movements and contributing factors less reliable or unavailable for these crashes. The factor of fatigue in particular, is not set for these crashes. Self-reported crashes make up 25 per cent of injury crashes in 2019.

Statistics on tow-away only crashes are no longer included in this Statistical Statement however are available in other forms on the Centre for Road Safety website.

Zero alcohol limit

The Road Transport (Safety and Traffic Management) Act 1999, prescribes a zero alcohol limit in NSW for novice licence holders commencing 3 May 2004. The zero alcohol limit means learner, provisional P1 and provisional P2 licence holders may not consume any alcohol before driving. Relevant tables in this statement incorporate the zero alcohol limit (novice range prescribed concentration of alcohol (PCA) and special range PCA offences).

Speed criteria change

Commencing 1 January 2010 the criteria for determining whether a crash can be considered to have involved speeding was improved to assess whether or not the vehicle was travelling in excess of that permitted, based on licence class or vehicle weight. Refer to Speeding on page 11.

Criteria for determining speeding and fatigue involvement

Speeding

The identification of speeding (excessive speed for the prevailing conditions) as a contributing factor in road crashes cannot always be determined directly from police reports of those crashes. Certain circumstances, however, suggest the involvement of speeding. The Centre for Road Safety has therefore drawn up criteria for determining whether or not a crash is to be considered as having involved speeding as a contributing factor.

Speeding is considered to have been a contributing factor to a road crash if that crash involved at least one speeding motor vehicle.
A motor vehicle is assessed as having been speeding if it satisfies the conditions described below under (a) or (b) or both.
(a) The vehicle was described by police as travelling at excessive speed; or the stated speed of the vehicle was in excess of that permitted for the vehicle controller's licence class or the vehicle weight (introduced 1 January 2010); or the stated speed of the vehicle was in excess of the speed limit.
(b) The vehicle was performing a manoeuvre characteristic of excessive speed, that is: while on a curve the vehicle jack-knifed, skidded, slid or the controller lost control; or
the vehicle ran off the road while negotiating a bend or turning a corner and the controller was not distracted by something or disadvantaged by drowsiness or sudden illness and was not swerving to avoid another vehicle, animal or object and the vehicle did not suffer equipment failure.

Fatigue

The identification of fatigue as a contributing factor in road crashes similarly cannot always be determined directly from police reports of those crashes and the following criteria are used to assess its involvement. Fatigue is considered to have been involved as a contributing factor to a road crash if that crash involved at least one fatigued motor vehicle controller.
A motor vehicle controller is assessed as having been fatigued if the conditions described under (c) or (d) are satisfied together or separately.
(c) The vehicle's controller was described by police as being asleep, drowsy or fatigued.
(d) The vehicle performed a manoeuvre which suggested loss of concentration of the controller due to fatigue, that is:
the vehicle travelled onto the incorrect side of a straight road and was involved in a head-on collision (and was not overtaking another vehicle and no other relevant factor was identified); or
the vehicle ran off a straight road or off the road to the outside of a curve and the vehicle was not directly identified as travelling at excessive speed and there was no other relevant factor identified for the manoeuvre.

The limitations on the amount of information that can be determined for crashes self-reported by involved parties to Police via the Police Assistance Line has meant that fatigue cannot be reliably determined for these crashes. Therefore, from 2015, these crashes are not subject to the above assessment for fatigue involvement.

Definitions and explanatory notes

Animal rider

Articulated truck
Bicycle rider
Bus
Car

Carriageway

Casualty
Controller
Crash

Driver
Emergency vehicle
Fatal crash
Fatality
Footpath

Heavy truck
Heavy rigid truck Intersection crash Killed

Light truck

Minor/Other injured

Minor/Other injury crash
Moderately injured

Moderate
Injury crash
Motor vehicle
Motorcycle

Motorcycle passenger

Motorcycle rider
Newcastle Metropolitan Area

Passenger	Any person, other than the controller, who is in, on, boarding, entering, alighting or falling from a road vehicle at the time of the crash, provided a portion of the person is in/on the road vehicle.
Pedal cycle	Any two or three-wheeled device operated solely by pedals and propelled by human powe except toy vehicles or other pedestrian conveyances. Includes bicycles with side-car, traile or training wheels attached and power assisted pedal cycles.
Pedal cycle passenger	A person on but not controlling a pedal cycle.
Pedal cycle ri	A person occupying the controlling position of a pedal cycle.
Pedestrian	Any person who is not in, on, boarding, entering, alighting or falling from a road vehicle at the time of the crash.
Pedestrian conveyance	Any device, ordinarily operated on the footpath, by which a pedestrian may move, or by which a pedestrian may move another pedestrian or goods. Includes non-motorised scooter, pedal car, skateboard, roller skates, in-line skates, toy tricycle, unicycle, push cart, sled, trolley, non-motorised go-cart, billycart, pram, wheelbarrow, handbarrow, nonmotorised wheelchair or any other toy device used as a means of mobility.
Road	The area devoted to public travel within a surveyed road reserve. Includes a footpath and cycle path inside the road reserve and a median strip or traffic island.
Road vehicle	Any device (except pedestrian conveyance) upon which or by which any person or property may be transported or drawn on a road.
Seriously injured (matched)	A person identified in a police report and matched to a health record indicating a hospital stay that is not an ED-only admission due to injuries sustained in a crash, or is identified as a Lifetime Care participant.
Seriously injured (unmatched)	A person not matched to a police report but identified from health records as having a hospital stay that is not an ED-only admission due to an injury on a public road.
Seriously injured (all hospitalisations)	A total of matched and unmatched seriously injured. S)
Serious injury crash	A non-fatal crash in which at least one person is seriously injured.
Sydney Metropolitan Area	Comprised of the following local government areas: Sydney, Bayside, Blacktown, Burwood, Camden, Campbelltown, Canada Bay, Canterbury-Bankstown, Cumberland, Fairfield, Georges River, Hornsby, Hunters Hill, Inner West, Ku-ring-gai, Lane Cove, Liverpool, Mosman, North Sydney, Northern Beaches, Parramatta, Penrith, Randwick, Ryde, Strathfield, Sutherland, The Hills, Waverley, Willoughby and Woollahra.
Wollongong Metropolitan Area	Comprised of the following local government areas: Wollongong and Shellharbour.

Interpreting tables correctly

It is essential to understand which particular data items are being counted in a table in order to avoid mistakes in interpreting them.

Convention for table headings

The first word(s) in the title of a table indicates the data items being counted. For example, Table 9 gives counts of casualties, Table 17 gives counts of crashes and Table 34 gives counts of motor vehicle controller casualties. Remaining words in the table titles indicate the classification variables.

EXAMPLE 1

Suppose you wish to know the number of car drivers aged 17-20 years who were killed. If you looked at Table 21a, saw the word fatal in the heading and assumed that the table was counting persons killed, you would deduce that 15 car drivers aged 17-20 were killed. That is not the correct answer. Table 21a is counting motor vehicle controllers involved in fatal crashes regardless of whether those controllers were themselves killed.

To determine the number of car drivers aged 17-20 who were killed you would need to use Table 32a. This table is counting casualties and the degree of casualty is the category killed. The correct answer to the above question, as indicated in this table, is 6.

EXAMPLE 2

Suppose you wish to know how many serious injury crashes involved at least one motorcycle. If you looked at Table 16, and did not note that the table is counting motor vehicles involved in crashes, you might be tempted to assume that the answer to your question was 1,040 . That is not the correct answer.

There can be more than one motorcycle involved in a particular crash so to answer this question you need to look at a table which is counting crashes, not motor vehicles involved in crashes.
The correct answer of 1,016 is to be found from Table 15a, which is counting crashes for particular crash types.

EXAMPLE 3

Don't make assumptions about the nature of persons killed or injured that are not justified by the information presented. Table 15b tells us the numbers of casualties from different types of crashes but does not imply anything about the road user classes of those casualties.

For example, when considering casualties from pedal cycle crashes you cannot assume that all casualties were pedal cycle riders or pedal cycle passengers. Some may be pedestrians or even truck drivers. A little lateral thinking is necessary to understand all the implications.

Serious Injuries (All Hospitalisations)

- Summary data for 2019
- Main points for 2019
- $\quad 2019$ serious injuries (all hospitalisations) and rates
- Serious injury (all hospitalisations) trends

Summary data for 2019

	Number	Percentage	Compared with 2018	
			Number change	Percentage change
SERIOUS INJURIES				
Serious injuries (matched)	4,606	41.6	-728	-13.6
Serious injuries (unmatched)	6,479	58.4	463	7.7
Serious injuries (all hospitalisations)	11,085	100.0	-265	-2.3
VEHICLES ON REGISTER ${ }^{1}$	5,642,400		70,500	1.3
Serious injuries (all hospitalisations) per 10,000 vehicles	19.65			-3.6
LICENCE HOLDERS ${ }^{2}$	5,606,200		77,000	1.4
Serious injuries (all hospitalisations) per 10,000 licence holders	19.77			-3.7
POPULATION OF STATE ${ }^{3}$	8,086,800		106,700	1.3
Serious injuries (all hospitalisations) per 100,000 persons	137.07			-3.6

[^0]
Main points for 2019

■ IMPORTANT NOTE - The 2019 Statistical Statement reflects changes to the historical hospitalisation statistics subsequent to the inclusion of two new health data collections to the Health Data Linkage program. The historical data have been slightly revised in light of the changed procedure (see Health data linkage process (p8) and Special notes (p9)).

■ There were 11,085 persons hospitalised from road traffic crashes in 2019, as derived from the data linkage with NSW Health Department admission data. This was 265 fewer hospitalisations (2 per cent) than the previous year and the lowest annual total since 2016.

■ The rate of persons hospitalised per 100,000 population was 137.1 in 2019, down from 142.2 the previous year. This was the lowest rate since 2012.

■ The estimated cost to the community of all road casualties in NSW for 2019 using the Inclusive Willingness to Pay methodology was around $\$ 9.0$ billion - hospitalisations accounted for more than half (60 per cent) of this total with $\$ 5.4$ billion.

■ Compared with 2018, drivers, passengers and pedal cyclists were the road user groups to have experienced decreases in hospitalisations in 2019.

■ There were 3,578 hospitalisations of drivers in 2019, down 154 (4 per cent) on the previous year. Of all road user groups, drivers accounted for the largest proportion of hospitalisations (32 per cent).

■ Motorcyclists continue to be the second largest road user group for hospitalisations in 2019, up by 135 (5 per cent) on the previous year and the highest motorcyclist total since these data were first recorded in 2005. Motorcyclists accounted for 24 per cent of all hospitalisations in 2019.

■ Passenger hospitalisations decreased in 2019, down by 26 (2 per cent) and the lowest passenger total since 2012. Passengers accounted for 12 per cent of all hospitalisations in 2019.

■ In contrast to the fatality statistics, pedal cyclists remain as the third largest road user group for hospitalisations in 2019, down by 127 (6 per cent) on the previous year. One in six (17 per cent) of all hospitalisations in 2019 were pedal cyclists.

■ Compared with 2018, age groups between 5 and 20 years, 26 and 59 years and 70 and 79 years experienced decreases in hospitalisations in 2019 with the largest decrease amongst 50 to 59 year olds, down by 108 (7 per cent).

■ Nineteen per cent of all hospitalisations were aged 17 to 25 years, but this age group represented only 12 per cent of the NSW population.

■ Children aged less than 17 years continued to experience reductions in hospitalisations in 2019 , down 6 (1 per cent) compared with 2018 and the lowest under 17 years total since these data were tabulated in 2005. Since 2005, hospitalisations of children aged under 17 years have decreased by 41 per cent.

■ In contrast, hospitalisations of persons aged 80 years or more increased again in 2019, up 14 (2 per cent) compared with 2018 and the highest total for this age group since these data were tabulated in 2005. Since 2005, hospitalisations of persons aged 80 years or more have increased by 89 per cent.

- Almost two-thirds (65 per cent) of all hospitalisations were males, but they represented only 50 per cent of the NSW population.

■ Of the 11,085 hospitalisations in 2019, less than half (42 per cent) were matched to a Police crash report.

Figure 1: Serious injury (all hospitalisations) rate per 10,000 vehicles, 10,000 licence holders and 100,000 population for years 2005 to 2019 in NSW

Note: Serious injury (all hospitalisations) rate is expressed as the number of persons seriously injured in road crashes per 10,000 vehicles on register, per 10,000 licence holders and per 100,000 population.

Table 1: Serious injuries (all hospitalisations), year, road user class

	Road User Class						
Year	Driver	Passenger	Motorcyclist	Pedestrian	Pedal cyclist	Other	Total
$\mathbf{2 0 0 5}$	2,613	1,380	1,852	980	1,345	699	8,869
$\mathbf{2 0 0 6}$	2,735	1,389	2,077	997	1,375	792	9,365
$\mathbf{2 0 0 7}$	2,730	1,269	2,124	1,069	1,438	807	9,437
$\mathbf{2 0 0 8}$	2,703	1,204	2,206	1,001	1,452	704	9,270
$\mathbf{2 0 0 9}$	2,598	1,303	2,297	979	1,444	664	9,285
$\mathbf{2 0 1 0}$	2,614	1,170	2,166	961	1,422	660	8,993
$\mathbf{2 0 1 1}$	2,853	1,191	2,180	989	1,462	603	9,278
$\mathbf{2 0 1 2}$	3,057	1,307	2,421	973	1,646	525	9,929
$\mathbf{2 0 1 3}$	3,371	1,388	2,511	1,035	1,900	567	10,772
$\mathbf{2 0 1 4}$	3,404	1,398	2,518	1,058	1,917	579	10,874
$\mathbf{2 0 1 5}$	3,544	1,388	2,297	989	1,856	524	10,598
$\mathbf{2 0 1 6}$	3,718	1,386	2,475	1,007	1,812	513	10,911
$\mathbf{2 0 1 7}$	3,663	1,383	2,479	1,041	1,936	602	11,104
$\mathbf{2 0 1 8}$	3,732	1,374	2,519	1,040	1,974	711	11,350
$\mathbf{2 0 1 9}$	3,578	1,348	2,654	1,045	1,847	613	11,085

[^1]Table 2: Serious injuries (all hospitalisations), year, age

Year	Age (years)												Total
	0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
$2005{ }^{1}$	144	1,288	972	1,045	613	1,431	1,170	809	526	452	387	32	8,869
2006	124	1,298	1,043	1,105	669	1,499	1,171	922	581	502	411	40	9,365
2007	130	1,267	991	968	660	1,510	1,286	974	607	567	445	32	9,437
2008	111	1,173	1,027	958	645	1,434	1,225	988	678	545	457	29	9,270
2009	113	1,089	1,018	936	655	1,406	1,318	1,035	674	503	508	30	9,285
2010	105	936	961	935	629	1,376	1,277	1,038	680	555	486	15	8,993
2011	100	872	987	969	679	1,358	1,348	1,085	785	585	501	9	9,278
2012	104	904	1,031	1,005	720	1,500	1,453	1,220	842	604	535	11	9,929
2013	103	944	1,095	1,113	752	1,572	1,553	1,401	965	645	614	15	10,772
2014	113	828	971	1,094	765	1,691	1,542	1,472	1,034	727	625	12	10,874
2015	95	798	994	1,109	739	1,563	1,502	1,434	1,015	714	620	15	10,598
2016	84	833	979	1,147	771	1,652	1,520	1,491	1,064	755	605	10	10,911
2017	105	791	1,036	1,246	781	1,556	1,558	1,483	1,090	791	654	13	11,104
2018	69	784	1,007	1,119	820	1,700	1,577	1,526	1,137	878	717	16	11,350
2019	80	767	921	1,143	807	1,597	1,559	1,418	1,178	868	731	16	11,085

[^2]Table 3: Serious injuries (all hospitalisations), year, gender

	Gender			
Year	Male	Female	Unknown	Total
2005^{1}	5,871	2,994	4	8,869
2006	6,228	3,133	4	9,365
2007	6,332	3,101	4	9,437
2008	6,294	2,974	2	9,270
2009	6,278	3,006	1	9,285
2010	5,977	3,015	1	8,993
2011	6,129	3,148	1	9,278
2012	6,657	3,270	2	9,929
2013	7,088	3,680	4	10,772
2014	7,109	3,765	0	10,874
2015	6,947	3,650	1	10,598
2016	7,096	3,814	1	10,911
2017	7,266	3,838	0	11,104
2018	7,425	3,925	0	11,350
2019	7,235	0	11,085	

[^3]
Table 4: Serious injuries (all hospitalisations), year, quarter

Year	Quarter				Total
	Q1	Q2	Q3	Q4	
$2005{ }^{1}$	2,235	2,200	2,112	2,322	8,869
2006	2,385	2,311	2,276	2,393	9,365
2007	2,505	2,410	2,252	2,270	9,437
2008	2,319	2,324	2,175	2,452	9,270
2009	2,366	2,231	2,264	2,424	9,285
2010	2,300	2,321	2,047	2,325	8,993
2011	2,406	2,198	2,220	2,454	9,278
2012	2,482	2,406	2,380	2,661	9,929
2013	2,521	2,533	2,710	3,008	10,772
2014	2,909	2,650	2,558	2,757	10,874
2015	2,797	2,590	2,485	2,726	10,598
2016	2,852	2,721	2,525	2,813	10,911
2017	2,762	2,719	2,787	2,836	11,104
2018	2,862	2,785	2,840	2,863	11,350
2019	2,880	2,920	2,558	2,727	11,085

[^4]
Casualty crash and casualty trends

- Summary data for 2019
- Main points for 2019
- Historical data
- Fatality and serious injury (matched) rates
- Interstate and international comparisons
- Causes of death

Summary data for 2019

	Number	Percentage	Compared with 2018	
			Number change	Percentage change
CRASHES				
Fatal crashes	329	2.4	3	0.9
Serious injury crashes	4,140	29.7	-627	-13.2
Moderate injury crashes	5,286	38.0	-696	-11.6
Minor/Other injury crashes	4,164	29.9	562	15.6
Total casualty crashes	13,919	100.0	-758	-5.2
CASUALTIES				
Killed	353	2.0	6	1.7
Seriously injured	4,606	26.2	-728	-13.6
Moderately injured	6,868	39.1	-1,031	-13.1
Minor/Other injured	5,721	32.6	719	14.4
Total casualties	17,548	100.0	-1,034	-5.6
MOTOR VEHICLES ON REGISTER ${ }^{\mathbf{1}}$	5,642,400		70,500	1.3
Fatalities per 10,000 vehicles	0.63			0.5
LICENCE HOLDERS ${ }^{2}$	5,606,200		77,000	1.4
Fatalities per 10,000 licence holders	0.63			0.3
POPULATION OF STATE ${ }^{3}$	8,086,800		106,700	1.3
Fatalities per 100,000 persons	4.37			0.4

[^5]
Main points for 2019

- The number of persons killed per 100,000 population was 4.37 . This is the third lowest fatality rate since records were first compiled in 1908.
- There were 13,919 casualty road crashes in New South Wales during 2019. Of these, 329 were fatal crashes and 13,590 were injury crashes. There were 353 persons killed and 17,195 injured.
- The estimated cost to the community of these road casualties using the Inclusive Willingness to Pay methodology was around $\$ 9.0$ billion (June 2019 dollar values).
- The number of persons killed was up by six (2 per cent) on the previous year, the second lowest annual fatality total since 2014.
- The number of persons injured in 2019 was down by 1,040 (6 per cent) on the previous year and was the lowest annual injury total since 1956.
- Pedestrians were the only road user group to experience a fatality decrease in 2019 compared with the previous year but this was offset by fatality increases among other road user groups.
- There were 45 pedestrians killed in 2019 (down 35 per cent), the third lowest pedestrian fatality total since records began in 1928, but the number of motorcyclists killed increased to 68 (up 26 per cent), the highest motorcyclist total since 2013 and the number of pedal cyclists killed increased to 14 (up 56 per cent), the equal highest pedal cyclist total since 2004.
- Motorcyclists, pedestrians and pedal cyclists were the only road user groups to experience injury increases in 2019 compared with the previous year.
- Country roads accounted for 37 per cent of all casualty crashes, but 67 per cent of fatal crashes.
- At least 13 per cent of motor vehicle occupants killed were not wearing available seat belts.

■ Two of the 14 pedal cyclists killed and at least 10 per cent of those injured failed to wear a helmet.

- Almost two-thirds (64 per cent) of the pedestrians killed were aged 60 or more, although this age group accounted for only 22 per cent of the population.
- Amongst those crashes in which the alcohol involvement was known, alcohol was a contributing factor in 56 per cent of fatal crashes on Thursday, Friday and Saturday nights, 19 per cent of all fatal crashes and 10 per cent of injury crashes.
- At least 5 per cent of all motor vehicle drivers and motorcycle riders who were killed or injured had an illegal blood alcohol concentration. Forty-six per cent of these casualties were in the high range ($0.15 \mathrm{~g} / 100 \mathrm{~mL}$ or more).
- Crashes which involved speeding represented at least 39 per cent of fatal crashes and 17 per cent of all casualty crashes.
- Fatigue was assessed as being involved in at least 17 per cent of fatal crashes and 8 per cent of all casualty crashes.
- The number of fatalities in May (20 fatalities) was the lowest May total since monthly records began in 1936.
- Twenty-five (19 per cent) of the 129 local government areas in NSW were fatality free in 2019. These 25 local government areas accounted for 6 per cent of the NSW population and included Ku-ring-gai (population 127,200), Woollahra $(59,400)$, Burwood $(40,600)$, Mosman $(31,000)$, Griffith $(27,000)$ and Broken Hill $(17,500)$.
■ Compared with 2018 there was a two per cent increase in fatalities in 2019. There were several crash characteristics which increased by more than the overall decrease. In particular, motorcyclist fatalities increased by 26 per cent, fatalities aged 40 to 49 years increased by 39 per cent, fatal crashes on Tuesdays increased by 40 per cent, fatalities in the Illawarra State Region up by 77 per cent whilst there were increases among drivers aged 60 to 69 years (up by 38 per cent) and motorcycle riders aged 50 to 59 years (up by 80 per cent) involved in fatal crashes.
■ However, compared with 2018, some notable decreases occurred in 2019 - pedestrian fatalities decreased by 35 per cent, fatalities aged 17 to 20 years decreased by 66 per cent, drivers and riders aged 17 to 20 years involved in fatal crashes decreased by 60 per cent, fatalities in the New England (down by 48 per cent) and Murray (down by 40 per cent) Regions and fatal crashes on Mondays (down by 31 per cent) and Fridays (down by 26 per cent).

Table 5: Trends in New South Wales 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000-2019

Year	Killed	Injured (d)	Seriously injured (d)	Moderately injured (d)	Minor/Other injured (d)	Total casualties (d)	Fatal crashes	Serious injury crashes (d)	Moderate injury crashes (d)	Minor/Other injury crashes (d)	Total casualty crashes (d)
1950	634	11,096				11,730					
1955	820	16,437				17,257					
1960	978	22,655				23,633	910				
1965	1,151	29,157				30,308	1,026				
1970	1,309	34,886				36,195	1,135				
1975	1,288	38,141				39,429	1,150				
1980	1,303	38,816				40,119	1,152				
1985	1,067	39,336				40,403	954				
1990	797	32,153				32,950	702				
1995	620	25,963				26,583	563				
2000	603	28,812				29,415	543				22,406
2001	524	29,913				30,437	486				23,168
2002	561	28,447				29,008	501				22,299
2003	539	27,208				27,747	483				21,281
2004	510	26,323				26,833	458				20,607
2005	508	28,496	4,763	12,521	11,212	29,004	459	4,102	9,765	7,833	22,159
2006	496	28,935	5,009	13,606	10,320	29,431	449	4,377	10,568	7,191	22,585
2007	435	29,631	4,953	14,731	9,947	30,066	405	4,367	11,265	6,815	22,852
2008	374	27,611	4,855	13,564	9,192	27,985	353	4,290	10,475	6,444	21,562
2009	453	27,995	4,904	13,776	9,315	28,448	408	4,320	10,774	6,421	21,923
2010	405	27,607	4,672	13,639	9,296	28,012	365	4,125	10,736	6,399	21,625
2011	364	28,224	5,099	13,309	9,816	28,588	336	4,539	10,530	6,645	22,050
2012	369	27,239	5,411	12,972	8,856	27,608	336	4,820	10,231	6,062	21,449
2013	333	26,117	5,802	12,295	8,020	26,450	316	5,204	9,756	5,392	20,668
2014	307	24,753	5,887	11,534	7,332	25,060	285	5,279	9,111	4,900	19,575
2015	350	23,216	5,566	9,883	7,767	23,566	326	4,950	7,576	5,465	18,317
2016	380	22,286	5,690	9,007	7,589	22,666	356	5,058	6,933	5,481	17,828
2017	389	21,218	5,648	8,773	6,797	21,607	351	4,992	6,679	4,826	16,848
2018	347	18,235	5,334	7,899	5,002	18,582	326	4,767	5,982	3,602	14,677
2019	353	17,195	4,606	6,868	5,721	17,548	329	4,140	5,286	4,164	13,919

Table 5: Trends in New South Wales 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990,
1995, 2000-2019

					Fatalities per				Serious injuries (matched) ${ }^{\text {d }}$ per			
Year	Vehicles on register ${ }^{1}$ ('000)	Licence holders ${ }^{2}$ ('000)	Population ${ }^{3}$ ('000)	Total vehicle kilometres travelled ${ }^{4}$ ('000,000)	$\begin{array}{r} 10,000 \\ \text { vehicles } \end{array}$	$\begin{array}{r} \text { 10,000 } \\ \text { licences } \end{array}$	$\begin{array}{r} 100,000 \\ \text { population } \end{array}$	100 million vehicle km	$\begin{array}{r} 10,000 \\ \text { vehicles } \end{array}$	$\begin{array}{r} \text { 10,000 } \\ \text { licences } \end{array}$	$\begin{array}{r} 100,000 \\ \text { population } \end{array}$	100 million vehicle km
1950	478	677	3,193	-	13.26	9.36	19.9	-				
1955	709	1,000	3,491	-	11.57	8.20	23.5	-				
1960	972	1,275	3,833	-	10.06	7.67	25.5	-				
1965	1,296	1,608	4,172	-	8.88	7.16	27.6	-				
1970	1,712	2,049	4,522	-	7.65	6.39	28.9	-				
1975	2,204	2,532	4,932	-	5.84	5.09	26.1	-				
1980	2,587	2,980	5,172	-	5.04	4.37	25.2	-				
1985	2,986	3,438	5,465	46,622	3.57	3.10	19.5	2.29				
1990	3,224	3,721	5,834	-	2.47	2.14	13.7	-				
1995	3,315	3,998	6,106	50,692	1.87	1.55	10.2	1.22				
2000	3,635	4,146	6,447	s56,262	1.66	1.45	9.4	1.07				
2001	3,739	4,157	6,530	s60,210	1.40	1.26	8.0	0.87				
2002	3,832	4,243	6,581	s63,425	1.46	1.32	8.5	0.88				
2003	3,941	4,317	6,621	s63,617	1.37	1.25	8.1	0.85				
2004	4,056	4,345	6,651	s60,661	1.26	1.17	7.7	0.84				
2005	4,127	4,397	6,693	s66,025	1.23	1.16	7.6	0.77	11.54	10.83	71.16	7.21
2006	4,222	4,474	6,743	s64,384	1.17	1.11	7.4	0.77	11.86	11.20	74.29	7.78
2007	4,312	4,577	6,834	s64,237	1.01	0.95	6.4	0.68	11.49	10.82	72.47	7.71
2008	4,421	4,642	6,943	s67,863	0.85	0.81	5.4	0.55	10.98	10.46	69.92	7.15
2009	4,518	4,721	7,054	-	1.00	0.96	6.4	-	10.86	10.39	69.52	-
2010	4,634	4,791	7,144	s69,163	0.87	0.85	5.7	0.59	10.08	9.75	65.39	6.76
2011	4,744	4,894	7,219	-	0.77	0.74	5.0	-	10.75	10.42	70.64	-
2012	4,850	4,985	7,304	s67,081	0.76	0.74	5.1	0.55	11.16	10.85	74.08	8.07
2013	4,956	5,061	7,404	-	0.67	0.66	4.5	-	11.71	11.46	78.36	-
2014	5,073	5,142	7,508	s71,372	0.61	0.60	4.1	0.43	11.61	11.45	78.41	8.25
2015	5,193	5,246	7,616	-	0.67	0.67	4.6	-	10.72	10.61	73.08	-
2016	5,337	5,338	7,733	s72,740	0.71	0.71	4.9	0.52	10.66	10.66	73.58	7.82
2017	5,453	5,440	7,868	-	0.71	0.72	4.9	-	10.36	10.38	71.79	-
2018	5,571	5,529	r7,980	s78,418	0.62	0.63	4.3	0.44	9.57	9.65	66.84	6.80
2019	5,642	5,606	p8,087	-	0.63	0.63	4.4	-	8.16	8.22	56.96	-

[^6]
 From Austraian Bureau of Statistics Survey of Motor Vehicle Use. Prior to 1988 travel by commercial buses was excluded. Revised methodology introduced for the years 1998 to 2007 . Changes to methodology introduced for 2008 . Prig
months ended 31 July. Travel from 2000 to 2011 is for the 12 months ended 31 October. Travel estimates for 2012 , 2016 and 2018 are for the 12 months ended 30 June. Travel estimate for 2014 is for the 12 months ended 31 October.
months ended 31 July. Travel from 2000 to 2011 is for the 12 months ended 31 October. Travel estimates for 2012,2016 and 2018 are for the 12 months ended 30 June. Travel estim
p- Preliminary r- revised
s - Revised estimates of motor vehicle travel tor f 1998 onwards based on NSW State of operation figures, estimates prior to 1998 remain based on NSW State of Registration figures.

Figure 2: Fatality rate per 10,000 motor vehicles, 10,000 licence holders and 100,000 population for years 1950 to 2019 in NSW

Note: Fatality rate is expressed as the number of persons killed in road crashes per 10,000 motor vehicles on register, per 10,000 licence holders (licences on issue prior to 1997) and per 100,000 population.

Table 6: Fatality comparison with other Australian States ${ }^{1}$ and other countries ${ }^{2}$
$\left.\begin{array}{lrrrrr}\hline & \text { Killed } & \begin{array}{r}\text { Vehicles } \\ \text { ('000) }\end{array} & \begin{array}{r}\text { Fatalities } \\ \text { Population } \\ \text { ('000) }\end{array} & \begin{array}{r}\text { Fatalities } \\ \text { per } \mathbf{1 0 , 0 0 0} \\ \text { pehicles }\end{array} \\ \text { population }\end{array}\right]$
${ }^{1}$ Australian fatality data (except for New South Wales) for 2019 based on the Bureau of Infrastructure, Transport and Regional Economics: Statistical Report, Road trauma Australia 2019 statistical summary.
${ }^{2}$ Fatality data are for 2019 for other countries and are based on Department for Transport statistics, United Kingdom: RAS52001 International comparisons of road deaths or relevant National Statistical Reporting Authorities, excluding Canada which are data for 2018.
${ }^{3}$ Australian vehicle figures (except for New South Wales) are as at 31 January 2019 and are from the Australian Bureau of Statistics Motor Vehicle Census Australia. These figures may not agree with registration statistics for individual States and Territories. Data for New South Wales are from TfNSW and are as at 30 June 2019. The 2019 vehicle figures for some other countries are sourced from relevant National Statistical Reporting Authorities. The 2018 vehicle figures for other jurisdictions are based on previously published data whilst those for the United States of America are sourced from US Department of Transport, Federal Highway Administration, Highway Statistics 2018.
${ }^{4}$ Australian population estimates are from the Australian Bureau of Statistics Australian Demographic Statistics for 30 June 2018 as published at September 2019. The population figures for other countries are based on OECD Stat data for 2018 as extracted at 24 October 2019 with the exception of the United Kingdom which quotes 2019 figures.
${ }^{4}$ Australian fatality rates per population are based calculated rates whilst International fatality rates are based on Department for Transport statistics, United Kingdom: RAS52001 International comparisons of road deaths or relevant National Statistical Reporting Authorities, excluding Canada which are data for 2018.
${ }^{18}$ Data for 2018.
${ }^{19}$ Data for 2019.

Table 7: Deaths within NSW, causes of death, sex, age for 2018

2018	Age (years)										TOTAL ${ }^{3}$
	0-14	15-19	20-24	25-29	30-39	40-49	50-59	60-69	70-79	≥ 80	
Males											
Deaths from all causes ${ }^{1}$	230	98	170	164	497	861	2,083	3,873	6,401	13,203	27,581
All accidental deaths ${ }^{1}$	15	36	70	50	132	161	161	122	123	452	1,322
Road deaths ${ }^{2}$	4	25	32	17	39	30	33	31	29	23	263
as \% of accidental deaths	27	69	46	34	30	19	20	25	24	5	20
as \% of all deaths	2	26	19	10	8	3	2	1	<1	<1	1
Females											
Deaths from all causes ${ }^{1}$	192	43	52	77	235	552	1,205	2,292	4,473	16,533	25,654
All accidental deaths ${ }^{1}$	15	12	14	19	41	53	65	55	77	534	885
Road deaths ${ }^{2}$	3	11	10	7	9	6	8	10	8	12	84
as \% of accidental deaths	20	100	71	37	22	11	12	18	10	2	9
as \% of all deaths	2	26	19	9	4	1	1	<1	<1	<1	<1
All persons											
Deaths from all causes ${ }^{1}$	422	141	222	241	732	1,413	3,288	6,165	10,874	29,736	53,235
All accidental deaths ${ }^{1}$	30	48	84	69	173	214	226	177	200	986	2,207
Road deaths ${ }^{2}$	7	36	42	24	48	36	41	41	37	35	347
as \% of accidental deaths	23	75	50	35	28	17	18	23	19	4	16
as \% of all deaths	2	26	19	10	7	3	1	1	<1	<1	1

[^7]Table 8: Fatalities, year, month

Year	Month												TOTAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
1950	51	36	54	59	50	57	63	46	51	46	68	53	634
1951	53	40	72	64	66	77	55	59	63	68	50	61	728
1952	58	58	65	82	70	52	50	49	51	52	50	63	700
1953	54	51	59	63	61	60	60	68	61	64	35	68	704
1954	51	70	56	76	65	54	62	73	67	73	47	60	754
1955	79	57	70	90	64	56	66	65	48	73	72	80	820
1956	56	60	80	66	71	71	62	57	70	64	65	79	801
1957	52	53	63	61	82	66	60	76	53	48	76	75	765
1958	70	54	70	60	86	67	76	64	66	63	64	84	824
1959	79	34	63	66	80	94	75	78	66	66	79	79	859
1960	79	82	73	94	81	87	110	89	62	79	59	83	978
1961	63	55	83	70	79	102	92	79	93	52	63	87	918
1962	72	58	72	62	91	66	88	75	74	67	58	93	876
1963	70	46	79	73	86	85	78	93	72	81	43	94	900
1964	78	76	93	83	111	72	78	87	84	88	71	89	1,010
1965	79	89	94	101	96	129	99	71	83	112	88	110	1,151
1966	98	66	88	126	99	94	96	73	71	117	95	120	1,143
1967	87	79	94	82	93	89	106	100	94	98	92	103	1,117
1968	90	104	103	72	102	110	102	96	100	100	105	127	1,211
1969	86	77	80	119	103	111	107	103	91	97	98	116	1,188
1970	105	89	118	136	116	91	92	115	94	129	107	117	1,309
1971	85	93	99	101	124	108	109	118	102	115	92	103	1,249
1972	73	59	86	94	112	74	85	114	95	94	90	116	1,092
1973	98	85	88	113	107	96	88	112	126	80	107	130	1,230
1974	103	95	101	94	108	113	93	113	112	105	105	133	1,275
1975	106	111	115	94	116	108	88	111	121	100	109	109	1,288
1976	92	76	95	113	126	102	99	106	129	116	98	112	1,264
1977	92	106	109	121	104	87	98	111	89	121	109	121	1,268
1978	114	95	126	101	122	129	128	123	113	104	104	125	1,384
1979	73	75	134	121	120	92	108	109	122	107	103	126	1,290
1980	99	62	97	128	112	103	134	128	92	118	124	106	1,303
1981	112	93	85	125	107	85	112	94	104	116	124	134	1,291
1982	134	113	90	119	101	96	104	106	98	101	107	84	1,253
1983	70	57	91	91	79	79	81	79	86	77	83	93	966
1984	89	76	103	71	96	90	56	91	85	75	97	108	1,037
1985	74	85	77	84	92	71	82	81	97	98	94	132	1,067
1986	89	85	100	74	107	76	76	74	81	101	77	89	1,029
1987	86	58	82	84	69	83	77	63	84	112	74	87	959
1988	89	75	97	75	81	74	85	79	92	107	84	99	1,037
1989	56	82	82	45	77	97	75	64	93	96	69	124	960
1990	52	52	87	57	59	70	83	66	80	62	55	74	797
1991	61	47	52	59	55	52	61	55	59	57	49	56	663
1992	55	56	56	47	41	59	53	65	50	62	55	50	649
1993	44	31	56	51	37	42	42	59	42	59	55	63	581
1994	56	41	65	54	51	42	52	38	43	73	69	63	647
1995	38	50	61	46	48	57	51	53	41	60	59	56	620
1996	23	49	49	62	48	56	50	52	43	52	47	50	581
1997	69	44	39	42	58	38	53	47	35	47	62	42	576
1998	47	39	61	43	58	51	36	51	37	47	31	55	556
1999	52	41	61	47	60	40	39	44	52	43	48	50	577

Table 8: Fatalities, year, month

Year	Month												TOTAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
2000	50	52	48	55	53	48	58	33	50	39	49	68	603
2001	38	39	42	42	56	35	44	51	35	46	46	50	524
2002	39	45	50	46	56	57	35	51	50	45	43	44	561
2003	42	40	49	47	42	32	35	51	40	57	52	52	539
2004	52	44	48	34	39	41	44	43	35	43	47	40	510
2005	35	38	37	45	56	40	50	40	44	40	37	46	508
2006	57	39	54	49	37	43	34	34	33	42	38	36	496
2007	34	30	42	47	31	41	41	30	32	33	37	37	435
2008	28	29	29	26	24	30	34	35	33	39	31	36	374
2009	26	34	39	55	36	34	27	49	42	45	30	36	453
2010	43	34	26	43	37	33	23	27	37	39	38	25	405
2011	28	30	31	25	25	27	29	38	29	23	39	40	364
2012	32	25	33	33	31	34	24	36	30	28	35	28	369
2013	15	33	30	26	24	32	26	33	15	37	34	28	333
2014	34	29	26	20	30	25	19	27	24	26	29	18	307
2015	37	16	24	24	35	25	31	40	26	32	32	28	350
2016	25	32	32	44	31	34	30	36	32	31	25	28	380
2017	30	18	28	31	35	31	40	41	29	28	38	40	389
2018	37	32	24	31	25	21	31	38	34	21	25	28	347
2019	38	28	41	28	20	26	23	31	33	29	27	29	353

Table 9: Casualties, year, road user class, degree of casualty ${ }^{1}$

	Road user class									
	Motor vehicle driver					Motor vehicle passenger				
	K	S	M	O	TI	K	S	M	O	TI
1960	273				7,029	248				8,801
1965	411				11,225	373				11,714
1970	494				13,710	387				12,719
1975	475				14,469	368				13,384
1976	455				14,131	370				13,154
1977	489				14,744	347				13,619
1978	537				16,339	396				14,700
1979	515				14,821	362				12,623
1980	487				15,390	359				12,940
1981	504				15,538	325				12,883
1982	453				13,258	322				11,087
1983	339				12,684	232				10,381
1984	374				14,001	275				10,753
1985	412				15,861	264				11,779
1986	393				15,964	262				11,591
1987	356				16,117	262				11,447
1988	403				15,795	270				10,685
1989	356				15,627	303				10,535
1990	310				14,469	200				9,082
1991	304				12,563	172				8,160
1992	287				11,883	176				7,490
1993	274				12,197	135				7,577
1994	258				12,388	181				7,127
1995	281				12,228	139				7,375
1996	234				12,280	146				7,174
1997	263				11,705	137				6,713
1998	247				12,653	148				7,344
1999	263				13,348	139				7,289
2000	278				15,270	146				7,308
2001	219				16,270	133				7,468
2002	276				15,553	123				6,856
2003	239				15,125	137				6,549
2004	229				14,749	122				6,051
2005	235	2,230	8,235	6,773	17,238	100	890	2,136	2,749	5,775
2006	249	2,364	9,145	6,160	17,669	102	874	2,168	2,547	5,589
2007	215	2,365	10,066	5,838	18,269	77	805	2,397	2,526	5,728
2008	194	2,310	9,133	5,492	16,935	67	747	2,105	2,129	4,981
2009	210	2,220	9,382	5,674	17,276	102	832	1,937	2,162	4,931
2010	185	2,194	9,463	5,737	17,394	89	690	1,854	2,192	4,736
2011	181	2,466	9,239	6,224	17,929	73	731	1,771	2,341	4,843
2012	164	2,631	9,069	5,652	17,352	82	792	1,632	1,956	4,380
2013	155	2,874	8,633	5,114	16,621	49	786	1,507	1,827	4,120
2014	153	2,836	8,181	4,816	15,833	43	796	1,370	1,644	3,810
2015	155	2,845	6,933	5,217	14,995	60	782	1,287	1,748	3,817
2016	183	2,833	6,407	5,251	14,491	54	756	1,097	1,626	3,479
2017	186	2,749	6,154	4,572	13,475	82	759	1,170	1,534	3,463
2018	158	2,691	5,531	3,325	11,547	57	714	931	1,035	2,680
2019	166	2,183	4,681	3,602	10,466	60	604	817	1,169	2,590

[^8]Table 9: Casualties, year, road user class, degree of casualty ${ }^{1}$

	Road user class									
	Motorcycle rider					Motor cycle passenger				
	K	S	M	O	TI	K	S	M	O	TI
1960	39				1,409	9				241
1965	28				901	4				95
1970	93				2,967	17				311
1975	142				4,483	19				609
1976	135				4,239	25				551
1977	125				4,055	15				508
1978	137				3,731	10				498
1979	127				3,783	22				506
1980	152				4,366	21				610
1981	146				4,643	26				655
1982	178				4,387	25				631
1983	143				4,817	10				590
1984	135				5,181	18				571
1985	122				5,220	21				573
1986	146				4,364	18				560
1987	119				4,053	19				455
1988	111				3,609	12				388
1989	98				3,064	11				307
1990	84				2,537	6				240
1991	54				2,220	4				212
1992	55				1,936	4				194
1993	41				1,884	5				164
1994	50				1,897	6				193
1995	57				1,848	2				174
1996	52				1,808	6				166
1997	43				1,707	1				142
1998	49				1,879	3				163
1999	51				1,770	4				149
2000	60				1,894	2				138
2001	68				2,007	2				151
2002	51				1,994	4				141
2003	56				1,826	3				110
2004	57				1,963	1				123
2005	61	707	800	488	1,995	3	42	40	41	123
2006	65	849	898	508	2,255	1	29	45	38	112
2007	57	817	881	511	2,209	4	32	51	47	130
2008	52	869	990	526	2,385	3	39	45	41	125
2009	66	933	1,079	560	2,572	3	32	52	36	120
2010	57	911	1,007	508	2,426	4	26	38	39	103
2011	47	971	1,054	472	2,497	4	29	35	36	100
2012	60	1,073	1,098	489	2,660	1	34	35	44	113
2013	67	1,135	1,022	411	2,568	4	39	49	35	123
2014	58	1,179	953	386	2,518	1	44	36	25	105
2015	66	1,011	809	317	2,137	1	26	25	22	73
2016	64	1,126	759	247	2,132	3	40	22	21	83
2017	58	1,153	718	265	2,136	1	36	28	15	79
2018	54	1,021	739	268	2,028	0	25	22	21	68
2019	65	996	688	425	2,109	3	34	37	27	98

[^9]Table 9: Casualties, year, road user class, degree of casualty ${ }^{1}$

| | | | | | Road user class | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

[^10]Table 9: Casualties, year, road user class, degree of casualty ${ }^{1}$

	Road user class									
	Other ${ }^{3}$					All road users				
	K	S	M	O	TI	K	S	M	O	TI
1960	0				25	978				22,655
1965	5				26	1,151				29,157
1970	1				41	1,309				34,886
1975	5				60	1,288				38,141
1976	1				60	1,264				37,327
1977	3				43	1,268				38,407
1978	1				16	1,384				40,875
1979	2				16	1,290				36,984
1980	1				23	1,303				38,816
1981	1				24	1,291				38,968
1982	0				12	1,253				34,553
1983	1				21	966				33,978
1984	1				25	1,037				36,271
1985	2				11	1,067				39,336
1986	0				15	1,029				38,230
1987	3				22	959				38,219
1988	2				13	1,037				36,616
1989	0				11	960				35,324
1990	0				21	797				32,153
1991	0				31	663				28,085
1992	0				13	649				25,920
1993	1				12	581				26,368
1994	0				15	647				26,160
1995	0				14	620				25,963
1996	0				21	581				26,029
1997	0				8	576				24,454
1998	0				3	556				26,415
1999	0				4	577				26,748
2000	1				5	603				28,812
2001	1				14	524				29,913
2002	0				4	561				28,447
2003	1				1	539				27,208
2004	0				20	510				26,323
2005	0	0	1	6	7	508	4,763	12,521	11,212	28,496
2006	0	0	0	2	2	496	5,009	13,606	10,320	28,935
2007	0	1	1	3	5	435	4,953	14,731	9,947	29,631
2008	1	0	1	0	1	374	4,855	13,564	9,192	27,611
2009	0	0	2	0	2	453	4,904	13,776	9,315	27,995
2010	0	0	1	0	1	405	4,672	13,639	9,296	27,607
2011	0	1	1	1	3	364	5,099	13,309	9,816	28,224
2012	0	0	2	0	2	369	5,411	12,972	8,856	27,239
2013	0	0	0	2	2	333	5,802	12,295	8,020	26,117
2014	0	2	0	2	4	307	5,887	11,534	7,332	24,753
2015	0	3	3	0	6	350	5,566	9,883	7,767	23,216
2016	0	0	2	0	2	380	5,690	9,007	7,589	22,286
2017	0	0	1	0	1	389	5,648	8,773	6,797	21,218
2018	0	1	0	2	3	347	5,334	7,899	5,002	18,235
2019	0	0	1	0	1	353	4,606	6,868	5,721	17,195

[^11]
Road casualty crashes in 2019

- Time distribution
- Crash types
- Motor vehicle types
- Factors in crashes
- Controllers in crashes
- Location and distribution of crashes

Table 10: Crashes, casualties, holiday periods, degree of crash, degree of casualty

Period	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
New Year (1 January) (1 day)	1	5	7	3	16	1	10	11	3	25
Australia Day (25 January to 28 January) (4 days)	2	41	49	22	114	3	44	76	41	164
Easter (18 April to 22 April) (5 days)	4	62	58	40	164	4	76	82	55	217
Anzac Day (25 April) (1 day)	2	10	12	7	31	2	15	20	11	48
Queen's Birthday (7 June to 10 June) (4 days)	4	34	50	19	107	4	41	64	38	147
Labour Day (4 October to 7 October) (4 days)	5	46	41	56	148	6	58	58	89	211
Christmas (24 December to 31 December) (8 days)	7	39	84	64	194	7	46	110	88	251
SCHOOL HOLIDAYS										
January (1 January to 28 January) (28 days)	31	298	377	210	916	36	348	496	303	1,183
End Term 1 (13 April to 28 April) (16 days)	20	194	228	142	584	20	232	316	207	775
End Term 2 (6 July to 21 July) (16 days)	16	180	214	179	589	16	196	279	275	766
End Term 3 (28 September to 13 October) (16 days)	12	141	217	195	565	13	160	291	275	739
December (21 December to 31 December) (11 days)	12	57	111	97	277	12	66	146	135	359

[^12]Table 11a: Fatal crashes, time period, day of week

Time period ${ }^{1}$	Day of week							Total
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
00:01-01:59	3	2	1	1	4	3	2	16
02:00-03:59	3	1	2	0	1	1	2	10
04:00-05:59	0	1	2	2	2	1	4	12
06:00-07:59	3	4	6	5	6	6	2	32
08:00-09:59	3	2	4	4	2	2	8	25
10:00-11:59	9	3	5	2	3	4	4	30
12:00-13:59	5	4	11	3	7	4	5	39
14:00-15:59	3	3	6	8	3	9	7	39
16:00-17:59	7	6	5	4	8	4	11	45
18:00-19:59	7	2	4	4	4	5	3	29
20:00-21:59	1	1	8	2	5	2	7	26
22:00- Midnight	4	5	2	4	3	2	6	26
Unknown	0	0	0	0	0	0	0	0

CRASHES:

TOTAL	48	34	56	39	48	43	61	329

1 In the case of a fatal crash reported with an unknown time, a time period is estimated.

Table 11b: Serious injury crashes, time period, day of week

Time period	Day of week							Total
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
00:01-01:59	30	13	6	15	15	11	31	121
02:00-03:59	27	5	7	13	4	10	19	85
04:00-05:59	24	16	17	23	20	21	17	138
06:00-07:59	29	60	72	74	50	50	36	371
08:00-09:59	43	76	72	71	77	63	49	451
10:00-11:59	74	59	61	67	54	65	83	463
12:00-13:59	78	63	60	62	66	54	79	462
14:00-15:59	85	72	90	69	95	100	93	604
16:00-17:59	79	86	84	93	84	92	79	597
18:00-19:59	47	45	57	53	69	64	64	399
20:00-21:59	29	26	42	32	37	53	41	260
22:00 - Midnight	20	19	20	25	26	38	40	188
Unknown	1	0	0	0	0	0	0	1
CRASHES:								
TOTAL	566	540	588	597	597	621	631	4,140

Table 11c: Moderate injury crashes, time period, day of week

Time period	Day of week							Total
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
00:01-01:59	30	16	21	18	16	24	32	157
02:00-03:59	27	15	7	11	13	8	22	103
04:00-05:59	21	19	25	22	29	19	15	150
06:00-07:59	20	67	79	66	69	66	32	399
08:00-09:59	45	89	93	107	114	107	64	619
10:00-11:59	83	62	60	69	72	90	110	546
12:00-13:59	85	71	86	86	87	95	113	623
14:00-15:59	79	93	100	137	108	122	108	747
16:00-17:59	89	116	138	128	119	129	82	801
18:00-19:59	47	61	70	83	77	83	73	494
20:00-21:59	59	42	51	65	54	63	67	401
22:00- Midnight	27	29	35	23	24	49	59	246
Unknown	0	0	0	0	0	0	0	0

CRASHES:

| TOTAL | 612 | 680 | 765 | 815 | 782 | 855 | 777 | 5,286 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 11d: Minor/Other injury crashes, time period, day of week

Time period	Day of week							Total
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
00:01-01:59	27	9	6	5	13	11	25	96
02:00-03:59	8	3	5	5	5	3	8	37
04:00-05:59	9	20	13	14	10	19	15	100
06:00-07:59	9	60	60	72	61	38	18	318
08:00-09:59	27	77	94	83	92	82	49	504
10:00-11:59	63	51	68	69	56	67	83	457
12:00-13:59	81	67	67	72	57	76	94	514
14:00-15:59	62	96	96	88	92	99	85	618
16:00-17:59	62	110	125	103	118	111	71	700
18:00-19:59	45	52	62	73	67	56	62	417
20:00-21:59	25	23	37	31	38	30	24	208
22:00- Midnight	17	27	21	23	34	30	43	195
Unknown	0	0	0	0	0	0	0	0
CRASHES:								
TOTAL	435	595	654	638	643	622	577	4,164

Table 11e: Total casualty crashes, time period, day of week

Time period	Day of week							Total
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
00:01-01:59	90	40	34	39	48	49	90	390
02:00-03:59	65	24	21	29	23	22	51	235
04:00-05:59	54	56	57	61	61	60	51	400
06:00-07:59	61	191	217	217	186	160	88	1,120
08:00-09:59	118	244	263	265	285	254	170	1,599
10:00-11:59	229	175	194	207	185	226	280	1,496
12:00-13:59	249	205	224	223	217	229	291	1,638
14:00-15:59	229	264	292	302	298	330	293	2,008
16:00-17:59	237	318	352	328	329	336	243	2,143
18:00-19:59	146	160	193	213	217	208	202	1,339
20:00-21:59	114	92	138	130	134	148	139	895
22:00 - Midnight	68	80	78	75	87	119	148	655
Unknown	1	0	0	0	0	0	0	1

CRASHES:

TOTAL	1,661	1,849	2,063	2,089	2,070	2,141	2,046	13,919

Table 12: Crashes, time period, degree of crash

Time period ${ }^{1}$	Degree of crash									
	Fatal crash		Serious injury crash		Moderate injury crash		Minor/Other injury crash		Total casualty crashes	
A	43	(2.1\%)	619	(30.2\%)	761	(37.1\%)	627	(30.6\%)	2,050	(100.0\%)
B	18	(4.0\%)	176	(39.4\%)	165	(36.9\%)	88	(19.7\%)	447	(100.0\%)
C	72	(2.2\%)	964	(29.2\%)	1,252	(37.9\%)	1,019	(30.8\%)	3,307	(100.0\%)
D	17	(2.1\%)	233	(28.9\%)	305	(37.9\%)	250	(31.1\%)	805	(100.0\%)
E	15	(2.2\%)	218	(32.7\%)	241	(36.1\%)	193	(28.9\%)	667	(100.0\%)
F	40	(1.8\%)	589	(26.2\%)	878	(39.0\%)	743	(33.0\%)	2,250	(100.0\%)
G	28	(1.8\%)	459	(29.2\%)	587	(37.4\%)	496	(31.6\%)	1,570	(100.0\%)
H	37	(3.1\%)	391	(32.3\%)	439	(36.3\%)	342	(28.3\%)	1,209	(100.0\%)
I	30	(4.0\%)	217	(29.2\%)	313	(42.2\%)	182	(24.5\%)	742	(100.0\%)
J	29	(3.3\%)	273	(31.3\%)	345	(39.6\%)	224	(25.7\%)	871	(100.0\%)
Unknown	0	(0.0\%)	1	(100.0\%)	0	(0.0\%)	0	(0.0\%)	1	(100.0\%)
CRASHES:										
TOTAL	329	(2.4\%)	4,140	(29.7\%)	5,286	(38.0\%)	4,164	(29.9\%)	13,919	(100.0\%)

${ }^{1}$ Time periods A to J are as shown on the next page. In the case of a fatal crash reported with an unknown time, a time period is estimated.

The time periods on the previous page were defined by A.J. McLean, O.T. Holubowycz and B.L. Sandow in their report Alcohol and Crashes: Identification of Relevant Factors in this Association, Department of Transport, Australia, 1980. The ten time periods, A to J, exhibit different characteristics of traffic conditions, driver/rider behaviour and trip purpose.

For example time period I is from 9 pm on Sunday, Monday, Tuesday and Wednesday nights to 3 am the following mornings.

Figure 3a: Fatal crashes, road user movement
(Number in each cell indicates number of crashes with a first impact of that type)

Figure 3b: Serious injury crashes, road user movement (Number in each cell indicates number of crashes with a first impact

Figure 3c: Total casualty crashes, road user movement (Number in each cell indicates number of crashes with a first impact

PEDESTRIANS (ON FOOT OR IN TOY/PRAM)	VEHICLES FROM ADJACENT DIRECTIONS (INTERSECTIONS ONLY)	VEHICLES FROM OPPOSING DIRECTION	VEHICLES FROM SAME DIRECTION	MANOEUVRING	OVERTAKING	ON PATH	OFF PATH, ON STRAIGHT	OFF PATH, ON CURVE OR TURNING	MISCELLANEOUS
			$\xrightarrow{2} \xrightarrow{\text { Vehicles in same lane }}$						
	RIGHT FAR	RIGHT THRU 992	$\begin{array}{ll} \\ & \\ \text { LEFT REAR } & 126 \\ \hline \end{array}$			\square DOUBLE PARKED 0			
PLAYING, WORKING, LYING, STANDING ON CARRIAGEWAY									
							 OUT OF CONTROL ON CARRIAGEWAY 328		
				$\xrightarrow{\longrightarrow}$					
DRIVEWAY									
									OTHER 1
OTHER PEDESTRIAN	OTHER ADJACENT 43	Other opposing 28	OTHER SAME DIRECTION	OTHER MANOEUVRING 90	OTHER overtaking 4	OTHER ON PATH 5	OTHER STRAIGHT 12	OTHER CURVE 6	

Table 13: Crashes, object hit in first impact, degree of crash

Object hit in first impact	Degree of crash				
	Fatal crash	Serious injury crash	Moderate injury crash	Minor/Other injury crash	Total casualty crashes
Bridge/wall	3	13	18	10	44
Fence/post	25	198	224	113	560
Pole	10	122	119	48	299
Embankment	19	109	95	45	268
Tree	43	313	293	111	760
Street furniture	7	43	72	19	141
Drain or culvert	6	50	49	17	122
Building	1	13	24	3	41
Other object	14	107	82	39	242
Stock	2	7	13	9	31
Kangaroo/wallaby	2	24	43	27	96
Other animal	1	10	5	11	27
Unknown	0	0	0	0	0
Sub-total	133	1,009	1,037	452	2,631
No object hit	196	3,131	4,249	3,712	11,288
CRASHES: TOTAL	329	4,140	5,286	4,164	13,919

Table 14: Single motor vehicle crashes, vehicle type, degree of crash

Vehicle type	Degree of crash				
	Fatal crash	Serious injury crash	Moderate injury crash	Minor/Other injury crash	Total casualty crashes
Car	81	674	867	359	1,981
Light truck	23	218	237	106	584
Heavy rigid truck	6	19	13	11	49
Articulated truck	7	30	35	19	91
Bus	0	0	10	6	16
Other motor vehicle	1	6	4	2	13
Motorcycle	35	444	260	173	912
SINGLE MOTOR VEHICLE CRASHES: TOTAL	153	1,391	1,426	676	3,646

[^13]Table 15a: Crashes, type of crash, degree of crash

Type of crash ${ }^{1}$	Degree of crash									
	Fatal crash		Serious injury crash		Moderate injury crash		Minor/Other injury crash		Total casualty crashes	
Car crash	207	(1.9\%)	2,990	(26.9\%)	4,360	(39.2\%)	3,576	(32.1\%)	11,133	(100.0\%)
Light truck crash	71	(2.4\%)	857	(28.6\%)	1,190	(39.8\%)	874	(29.2\%)	2,992	(100.0\%)
Heavy truck crash	51	(6.8\%)	225	(30.0\%)	266	(35.4\%)	209	(27.8\%)	751	(100.0\%)
Heavy rigid truck crash	30	(6.8\%)	132	(29.9\%)	144	(32.6\%)	136	(30.8\%)	442	(100.0\%)
Articulated truck crash	23	(7.0\%)	103	(31.2\%)	128	(38.8\%)	76	(23.0\%)	330	(100.0\%)
Bus crash	9	(5.8\%)	45	(29.2\%)	61	(39.6\%)	39	(25.3\%)	154	(100.0\%)
Heavy bus crash	9	(7.4\%)	37	(30.6\%)	46	(38.0\%)	29	(24.0\%)	121	(100.0\%)
Emergency vehicle crash	0	(0.0\%)	21	(31.3\%)	26	(38.8\%)	20	(29.9\%)	67	(100.0\%)
Motorcycle crash	64	(2.9\%)	1,016	(46.2\%)	698	(31.7\%)	421	(19.1\%)	2,199	(100.0\%)
Pedal cycle crash	13	(1.8\%)	251	(33.9\%)	281	(37.9\%)	196	(26.5\%)	741	(100.0\%)
Pedestrian crash	45	(3.7\%)	535	(44.5\%)	350	(29.1\%)	272	(22.6\%)	1,202	(100.0\%)
All types of crashes	329	(2.4\%)	4,140	(29.7\%)	5,286	(38.0\%)	4,164	(29.9\%)	13,919	(100.0\%)

[^14]Table 15b: Casualties, type of crash, degree of casualty

Type of crash ${ }^{1}$	Degree of casualty									
	Killed		Seriously injured		Moderately injured		Minor/Other injured		Total killed \& injured	
Car crash	227	(1.6\%)	3,387	(23.7\%)	5,728	(40.1\%)	4,944	(34.6\%)	14,286	(100.0\%)
Light truck crash	76	(1.9\%)	964	(24.2\%)	1,644	(41.2\%)	1,302	(32.7\%)	3,986	(100.0\%)
Heavy truck crash	55	(5.6\%)	254	(26.1\%)	371	(38.1\%)	295	(30.3\%)	975	(100.0\%)
Heavy rigid truck crash	34	(5.7\%)	147	(24.7\%)	216	(36.4\%)	197	(33.2\%)	594	(100.0\%)
Articulated truck crash	23	(5.5\%)	120	(28.9\%)	165	(39.8\%)	107	(25.8\%)	415	(100.0\%)
Bus crash	10	(3.6\%)	54	(19.2\%)	114	(40.6\%)	103	(36.7\%)	281	(100.0\%)
Heavy bus crash	10	(4.7\%)	43	(20.4\%)	91	(43.1\%)	67	(31.8\%)	211	(100.0\%)
Emergency vehicle crash	0	(0.0\%)	24	(23.8\%)	40	(39.6\%)	37	(36.6\%)	101	(100.0\%)
Motorcycle crash	68	(2.8\%)	1,048	(43.0\%)	827	(33.9\%)	493	(20.2\%)	2,436	(100.0\%)
Pedal cycle crash	14	(1.8\%)	254	(32.3\%)	308	(39.2\%)	210	(26.7\%)	786	(100.0\%)
Pedestrian crash	45	(3.2\%)	560	(39.7\%)	488	(34.6\%)	319	(22.6\%)	1,412	(100.0\%)
All types of crashes	353	(2.0\%)	4,606	(26.2\%)	6,868	(39.1\%)	5,721	(32.6\%)	17,548	(100.0\%)

[^15]Table 16: Motor vehicles involved and involvement rate ${ }^{1}$, vehicle type, degree of crash

	Degree of crash									
Vehicle type	Fatal crash		Serious injury crash		Moderate injury crash		Minor/Other injury crash		Total casualty crashes	
Passenger vehicle ${ }^{2}$	270	0.6	4,168	9.3	6,636	14.8	5,873	13.1	16,947	37.7
Rigid truck, van or utility	114	1.3	1,143	13.1	1,616	18.5	1,176	13.4	4,049	46.3
Articulated truck ${ }^{3}$	25	11.2	108	48.2	132	58.9	83	37.0	348	155.2
Bus	9	6.3	45	31.7	61	43.0	40	28.2	155	109.4
Motorcycle	70	2.9	1,040	43.0	710	29.3	424	17.5	2,244	92.7
All motor vehicles on register ${ }^{4}$	492	0.9	6,603	11.7	9,318	16.5	7,747	13.7	24,160	42.8

 database, the involvement rates for the passenger vehicle and rigid truck, van or utility categories are not comparable with years prior to 2013
1 Rates (shown in italics) are expressed as the number of vehicles involved in crashes per 10,000 registered vehicles of that type using registration data as at 30 June 2019.
2 Comprised of sedan, station wagon, hatchback, taxi-cab, passenger van and four wheel drive passenger vehicle.
${ }^{3}$ Comprised of articulated tanker, semi-trailer, low loader, road train and B-double
4 Includes other and unknown motor vehicle types.

Table 17: Crashes, factors, degree of crash

Factors possibly contributing to crash ${ }^{1}$	Degree of crash				
	Fatal crash	Serious injury crash	Moderate injury crash	Minor/Other injury crash	Total casualty crashes
Controller Disadvantaged ${ }^{2}$					
Chronic illness/physical infirmity	1	1	5	1	8
Sudden illness	9	151	178	31	369
Swerving to avoid animal	3	75	88	31	197
Distraction inside vehicle	7	101	150	58	316
Distraction outside vehicle	33	384	387	168	972
Equipment failure/fault					
Brakes	2	10	11	5	28
Steering	0	4	6	1	11
Tyres	3	21	35	10	69
Wheel, axle/suspension	0	3	3	1	7
Lights	0	2	0	0	2
Towing/coupling	1	1	1	1	4
Insecure load	2	4	5	1	12

 brakes failed would be counted once in each of the relevant categories.
${ }^{1}$ Data under-reported due to difficulty in collection.
${ }^{2}$ Motor vehicle controllers only.

Table 18: Crashes, degree of crash, alcohol involvement, time period

Degree of crash	Alcohol involved	Time Period ${ }^{1}$										Unknown	Total
		A	B	C	D	E	F	G	H	I	J		
Fatal	Yes	4	3	4	1	1	5	1	8	14	14	0	55
	No	36	13	57	14	10	28	22	25	15	11	0	231
	Unknown	3	2	11	2	4	7	5	4	1	4	0	43
	Sub-total	43	18	72	17	15	40	28	37	30	29	0	329
Serious injury	Yes	15	22	13	5	6	32	32	25	36	74	0	260
	No	404	111	668	160	145	372	282	258	123	134	1	2,658
	Unknown	200	43	283	68	67	185	145	108	58	65	0	1,222
	Sub-total	619	176	964	233	218	589	459	391	217	273	1	4,140
Moderate injury	Yes	12	28	14	7	9	38	16	42	52	72	0	290
	No	364	74	626	167	138	422	267	212	153	145	0	2,568
	Unknown	385	63	612	131	94	418	304	185	108	128	0	2,428
	Sub-total	761	165	1,252	305	241	878	587	439	313	345	0	5,286
Minor/Other	Yes	6	10	5	0	3	9	8	12	16	21	0	90
injury	No	106	18	204	40	46	136	80	79	53	54	0	816
	Unknown	515	60	810	210	144	598	408	251	113	149	0	3,258
	Sub-total	627	88	1,019	250	193	743	496	342	182	224	0	4,164
Total casualty crashes	Yes	37	63	36	13	19	84	57	87	118	181	0	695
	No	910	216	1,555	381	339	958	651	574	344	344	1	6,273
	Unknown	1,103	168	1,716	411	309	1,208	862	548	280	346	0	6,951
	TOTAL	2,050	447	3,307	805	667	2,250	1,570	1,209	742	871	1	13,919

Note: Assessment of alcohol involvement in a crash is based on the blood alcohol concentration (BAC) readings of the motor vehicle controllers involved in the crash as follows:
Yes \quad at least one motor vehicle controller was over the legal limit.
No - (1) BAC levels for all motor vehicle controllers are known and were under the legal limit; or

- (2) no motor vehicle controllers were involved in the crash.

Unknown - at least one motor vehicle controller had unknown BAC and all known BAC levels were under the legal limit.
1 Time periods A to J are as defined on page 43 . In the case of a fatal crash reported with an unknown time, a time period is estimated.

Table 19: Crashes, degree of crash, alcohol involvement, urbanisation

Degree of crash	Alcohol involved	Urbanisation						Total
		Metropolitan ${ }^{1}$			Country ${ }^{2}$			
		Sydney	Newcastle	Wollongong	Urban	Nonurban	Unknown	
Fatal	Yes	8	1	0	22	24	0	55
	No	69	14	9	47	92	0	231
	Unknown	9	0	0	13	21	0	43
	Sub-total	86	15	9	82	137	0	329
Serious	Yes	88	16	6	96	54	0	260
injury	No	1,331	122	105	666	434	0	2,658
	Unknown	767	42	51	241	120	1	1,222
	Sub-total	2,186	180	162	1,003	608	1	4,140
Moderate	Yes	104	9	18	127	32	0	290
injury	No	1,110	125	68	835	429	1	2,568
	Unknown	1,363	118	84	620	243	0	2,428
	Sub-total	2,577	252	170	1,582	704	1	5,286
Minor/Other	Yes	39	2	3	35	11	0	90
injury	No	423	27	38	178	150	0	816
	Unknown	2,416	125	79	438	200	0	3,258
	Sub-total	2,878	154	120	651	361	0	4,164
Total	Yes	239	28	27	280	121	0	695
casualty	No	2,933	288	220	1,726	1,105	1	6,273
crashes	Unknown	4,555	285	214	1,312	584	1	6,951
	TOTAL	7,727	601	461	3,318	1,810	2	13,919

1 The Sydney, Newcastle and Wollongong Metropolitan Areas are defined in the Definitions on pages 12 and 13.
2 Country areas comprise all other areas of NSW and are sub-divided by speed limits as follows:
Urban: Speed limit up to and including $80 \mathrm{~km} / \mathrm{h}$.
Non-urban: Speed limit over $80 \mathrm{~km} / \mathrm{h}$.
Unknown: Speed limit is unknown.

Table 20a: Crashes, alcohol involvement, degree of crash

	Degree of crash ${ }^{1}$				
Alcohol involved in crash	FC	SC	MC	OC	Total casualty crashes
Yes	55	260	290	90	695
No	231	2,658	2,568	816	6,273
Unknown	43	1,222	2,428	3,258	6,951
Crashes: Total	329	4,140	5,286	4,164	13,919

Table 20b: Crashes, speeding involvement, degree of crash

	Degree of crash ${ }^{1}$				
			SC	OC	Total casualty crashes
Speeding involved in crash	FC	127	918	889	409
Yes	202	3,222	4,397	3,755	11,576
No or unknown	$\mathbf{3 2 9}$	$\mathbf{4 , 1 4 0}$	$\mathbf{5 , 2 8 6}$	$\mathbf{4 , 1 6 4}$	$\mathbf{1 3 , 9 1 9}$
Crashes: Total					

Table 20c: Crashes, fatigue involvement, degree of crash

	Degree of crash 1				
Fatigue involved in crash	FC	SC	MC	OC	Total casualty crashes
Yes	55	446	491	173	1,165
No or unknown	274	3,694	4,795	3,991	12,754
Crashes: Total	329	$\mathbf{4 , 1 4 0}$	$\mathbf{5 , 2 8 6}$	$\mathbf{4 , 1 6 4}$	$\mathbf{1 3 , 9 1 9}$

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash
The identification of speeding and fatigue involvement cannot always be determined from police reports of road crashes. The Centre for Road Safety has therefore established criteria for determining if a crash is likely to have involved these factors. The criteria used for this purpose are shown on page 11.

Table 21a: Motor vehicle controllers involved, degree of crash, road user class, sex, age DEGREE OF CRASH: FATAL

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Car driver	M	0	0	10	24	15	16	29	33	22	13	12	1	175
	F	0	0	5	11	8	15	18	12	14	8	3	0	94
	Sub-total ${ }^{1}$	0	0	15	35	23	31	47	45	36	21	15	2	270
Light truck driver	M	0	0	3	9	6	15	7	11	7	3	4	0	65
	F	0	0	1	1	1	2	1	0	1	0	0	0	7
	Sub-total ${ }^{1}$	0	0	4	10	7	17	8	11	8	3	4	0	72
Heavy rigid truck driver	M	0	0	0	0	5	9	7	7	1	1	0	0	30
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{1}$	0	0	0	0	5	9	7	7	1	1	0	0	30
Articulated truck driver	M	0	0	0	0	1	6	7	4	3	0	0	1	22
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{1}$	0	0	0	0	1	6	7	4	3	0	0	1	22
Bus driver	M	0	0	0	0	0	2	1	2	3	0	0	0	8
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{1}$	0	0	0	0	0	2	1	2	3	0	0	0	8
Motorcycle rider	M	0	0	1	14	6	9	7	17	7	7	0	0	68
	F	0	0	0	0	0	0	1	1	0	0	0	0	2
	Sub-total ${ }^{1}$	0	0	1	14	6	9	8	18	7	7	0	0	70
Other motor vehicle driver	M	0	0	0	0	0	0	0	0	0	0	1	0	1
	F	0	0	0	0	0	1	0	0	0	0	0	0	1
	Sub-total ${ }^{1}$	0	0	0	0	0	1	0	0	0	0	1	2	4
MOTOR VEHICLE	M	0	0	14	47	33	57	58	74	43	24	17	2	369
CONTROLLERS:	F	0	0	6	12	9	18	20	13	15	8	3	0	104
	TOTAL ${ }^{1}$	0	0	20	59	42	75	78	87	58	32	20	5	476

[^16]Table 21b: Motor vehicle controllers involved, degree of crash, road user class, sex, age DEGREE OF CRASH: SERIOUS INJURY

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Car driver	M	0	8	214	254	154	393	309	282	216	184	121	31	2,166
	F	0	8	168	189	134	308	283	240	209	150	76	18	1,783
	Sub-total ${ }^{1}$	0	16	382	443	288	701	592	522	425	334	197	82	3,982
Light truck driver	M	0	3	89	97	76	159	123	102	58	25	7	14	753
	F	0	1	8	12	8	21	22	13	15	4	0	1	105
	Sub-total ${ }^{1}$	0	4	97	109	84	180	145	115	73	29	7	21	864
Heavy rigid truck	M	0	0	2	9	10	27	31	24	16	3	1	0	123
driver	F	0	0	0	1	0	0	0	1	0	0	0	0	2
	Sub-total ${ }^{1}$	0	0	2	10	10	27	31	25	16	3	1	1	126
Articulated truck	M	0	0	0	4	7	18	30	29	11	2	0	0	101
driver	F	0	0	0	0	0	0	1	0	0	0	0	0	1
	Sub-total ${ }^{1}$	0	0	0	4	7	18	31	29	11	2	0	2	104
Bus driver	M	0	0	0	0	2	7	6	16	7	2	0	1	41
	F	0	0	0	0	0	0	0	1	0	0	0	0	1
	Sub-total ${ }^{1}$	0	0	0	0	2	7	6	17	7	2	0	2	43
Motorcycle rider	M	0	28	94	131	89	180	142	168	98	21	3	4	958
	F	0	1	5	14	7	17	14	14	4	0	0	1	77
	Sub-total ${ }^{1}$	0	29	99	145	96	197	156	182	102	21	3	7	1,037
Other motor vehicle driver	M	0	0	1	1	0	0	6	5	1	2	3	9	28
	F	0	0	0	1	0	0	1	1	1	0	0	4	8
	Sub-total ${ }^{1}$	0	0	1	2	0	0	7	6	2	2	3	64	87
MOTOR VEHICLE	M	0	39	400	496	338	784	647	626	407	239	135	59	4,170
CONTROLLERS:	F	0	10	181	217	149	346	321	270	229	154	76	24	1,977
	TOTAL ${ }^{1}$	0	49	581	713	487	1,130	968	896	636	393	211	179	6,243

${ }^{1}$ Unknown sex included.

Table 21c: Motor vehicle controllers involved, degree of crash, road user class, sex, age DEGREE OF CRASH: MODERATE INJURY

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Car driver	M	0	12	355	410	293	642	496	412	298	196	125	97	3,336
	F	0	13	337	387	247	591	469	376	269	158	66	45	2,958
	Sub-total ${ }^{1}$	0	25	692	797	540	1,233	966	788	567	354	191	205	6,358
Light truck driver	M	0	4	99	152	103	211	171	143	79	36	14	29	1,041
	F	0	2	13	30	12	43	37	20	15	4	1	4	181
	Sub-total ${ }^{1}$	0	6	112	182	115	254	208	163	94	40	15	43	1,232
Heavy rigid truck	M	0	0	3	6	12	31	39	26	16	1	0	2	136
driver	F	0	0	0	1	0	1	1	0	1	0	0	0	4
	Sub-total ${ }^{1}$	0	0	3	7	12	32	40	26	17	1	0	5	143
Articulated truck	M	0	0	0	12	6	31	31	27	13	1	0	2	123
driver	F	0	0	0	0	0	0	0	1	0	0	0	0	1
	Sub-total ${ }^{1}$	0	0	0	12	6	31	31	28	13	1	0	9	131
Bus driver	M	0	0	0	0	2	11	8	12	12	1	0	4	50
	F	0	0	0	0	0	0	2	4	0	0	0	0	6
	Sub-total ${ }^{1}$	0	0	0	0	2	11	10	16	12	1	0	8	60
Motorcycle rider	M	0	11	54	105	92	135	92	94	35	10	0	6	634
	F	0	1	0	10	8	17	22	10	5	0	0	0	73
	Sub-total ${ }^{1}$	0	12	54	115	100	152	114	104	40	10	0	8	709
Other motor vehicle driver	M	0	0	3	2	2	3	9	4	2	0	2	14	41
	F	0	0	2	0	2	0	2	1	1	2	0	6	16
	Sub-total ${ }^{1}$	0	0	5	2	4	3	11	5	3	2	2	110	147
MOTOR VEHICLE	M	0	27	514	687	510	1,064	846	718	455	245	141	154	5,361
CONTROLLERS:	F	0	16	352	428	269	652	533	412	291	164	67	55	3,239
	TOTAL ${ }^{1}$	0	43	866	1,115	779	1,716	1,380	1,130	746	409	208	388	8,780

1 Unknown sex included.

Table 21d: Motor vehicle controllers involved, degree of crash, road user class, sex, age DEGREE OF CRASH: MINOR/OTHER INJURY

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Car driver	M	0	4	194	305	256	622	470	403	275	124	60	253	2,966
	F	0	8	181	267	240	565	505	411	224	106	34	178	2,719
	Sub-total ${ }^{1}$	0	12	375	574	496	1,188	977	814	500	230	94	550	5,810
Light truck driver	M	0	0	67	85	74	164	140	118	45	26	7	76	802
	F	0	0	10	12	11	19	21	14	10	2	0	6	105
	Sub-total ${ }^{1}$	0	0	77	97	85	183	161	132	55	28	7	100	925
Heavy rigid truck	M	0	0	0	9	13	24	32	26	15	3	0	12	134
driver	F	0	0	0	0	0	1	0	1	0	0	0	0	2
	Sub-total ${ }^{1}$	0	0	0	9	13	25	32	27	15	3	0	15	139
Articulated truck	M	0	0	0	5	3	15	22	20	11	1	0	4	81
driver	F	0	0	0	0	0	0	1	0	0	0	0	0	1
	Sub-total ${ }^{1}$	0	0	0	5	3	15	23	20	11	1	0	4	82
Bus driver	M	0	0	0	0	0	9	3	7	3	3	0	3	28
	F	0	0	0	0	0	0	3	0	0	0	0	0	3
	Sub-total ${ }^{1}$	0	0	0	0	0	9	6	7	3	3	0	11	39
Motorcycle rider	M	0	5	25	50	43	59	58	72	32	9	0	16	369
	F	0	0	3	5	8	12	12	5	3	0	0	3	51
	Sub-total ${ }^{1}$	0	5	28	55	51	71	70	77	35	9	0	22	423
Other motor vehicle driver	M	0	0	3	4	5	6	5	3	4	1	4	20	55
	F	0	0	1	1	0	3	1	1	0	0	0	9	16
	Sub-total ${ }^{1}$	0	0	4	5	5	9	6	4	4	1	4	104	146
MOTOR VEHICLE	M	0	9	289	458	394	899	730	649	385	167	71	384	4,435
CONTROLLERS:	F	0	8	195	285	259	600	543	432	237	108	34	196	2,897
	TOTAL ${ }^{1}$	0	17	484	745	653	1,500	1,275	1,081	623	275	105	806	7,564

1 Unknown sex included.

Table 21e: Motor vehicle controllers involved, degree of crash, road user class, sex, age DEGREE OF CRASH: ALL CASUALTY CRASHES

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Car driver	M	0	24	773	993	718	1,673	1,304	1,130	811	517	318	382	8,643
	F	0	29	691	854	629	1,479	1,275	1,039	716	422	179	241	7,554
	Sub-total ${ }^{1}$	0	53	1,464	1,849	1,347	3,153	2,582	2,169	1,528	939	497	839	16,420
Light truck driver	M	0	7	258	343	259	549	441	374	189	90	32	119	2,661
	F	0	3	32	55	32	85	81	47	41	10	1	11	398
	Sub-total ${ }^{1}$	0	10	290	398	291	634	522	421	230	100	33	164	3,093
Heavy rigid truck	M	0	0	5	24	40	91	109	83	48	8	1	14	423
driver	F	0	0	0	2	0	2	1	2	1	0	0	0	8
	Sub-total ${ }^{1}$	0	0	5	26	40	93	110	85	49	8	1	21	438
Articulated truck	M	0	0	0	21	17	70	90	80	38	4	0	7	327
driver	F	0	0	0	0	0	0	2	1	0	0	0	0	3
	Sub-total ${ }^{1}$	0	0	0	21	17	70	92	81	38	4	0	16	339
Bus driver	M	0	0	0	0	4	29	18	37	25	6	0	8	127
	F	0	0	0	0	0	0	5	5	0	0	0	0	10
	Sub-total ${ }^{1}$	0	0	0	0	4	29	23	42	25	6	0	21	150
Motorcycle rider	M	0	44	174	300	230	383	299	351	172	47	3	26	2,029
	F	0	2	8	29	23	46	49	30	12	0	0	4	203
	Sub-total ${ }^{1}$	0	46	182	329	253	429	348	381	184	47	3	37	2,239
Other motor vehicle driver	M	0	0	7	7	7	9	20	12	7	3	10	43	125
	F	0	0	3	2	2	4	4	3	2	2	0	19	41
	Sub-total ${ }^{1}$	0	0	10	9	9	13	24	15	9	5	10	280	384
MOTOR VEHICLE	M	0	75	1,217	1,688	1,275	2,804	2,281	2,067	1,290	675	364	599	14,335
CONTROLLERS:	F	0	34	734	942	686	1,616	1,417	1,127	772	434	180	275	8,217
	TOTAL ${ }^{1}$	0	109	1,951	2,632	1,961	4,421	3,701	3,194	2,063	1,109	544	1,378	23,063

1 Unknown sex included.

Table 22: Motor vehicle controllers involved, road user class, licence status, degree of crash

Road user class	Licence status	Degree of crash ${ }^{1}$				
		FC	SC	MC	OC	Total casualty crashes
Car driver	Learner	3	41	40	24	108
	Provisional ${ }^{3}$	28	501	901	516	1,946
	Standard	172	2,678	4,056	3,611	10,517
	Unlicensed ${ }^{2}$	10	147	219	126	502
	Unknown	57	615	1,142	1,533	3,347
	Sub-total	270	3,982	6,358	5,810	16,420
Light truck driver	Learner	0	9	7	1	17
	Provisional ${ }^{3}$	3	111	129	93	336
	Standard	55	569	839	565	2,028
	Unlicensed ${ }^{2}$	6	45	44	28	123
	Unknown	8	130	213	238	589
	Sub-total	72	864	1,232	925	3,093
Heavy rigid truck driver	Provisional ${ }^{4}$	0	4	5	0	9
	Standard	28	107	114	105	354
	Unlicensed ${ }^{2}$	0	0	4	4	8
	Unknown	2	15	20	30	67
	Sub-total	30	126	143	139	438
Articulated truck driver	Standard	16	81	87	58	242
	Unlicensed ${ }^{2}$	1	3	1	1	6
	Unknown	5	20	43	23	91
	Sub-total	22	104	131	82	339
Bus driver	Learner	0	0	0	0	0
	Provisional ${ }^{3}$	0	0	0	1	1
	Standard	8	39	47	27	121
	Unlicensed ${ }^{2}$	0	0	0	0	0
	Unknown	0	4	13	11	28
	Sub-total	8	43	60	39	150
Motorcycle rider	Learner	6	143	91	35	275
	Provisional ${ }^{3}$	3	100	80	36	219
	Standard	44	522	363	193	1,122
	Unlicensed ${ }^{2}$	9	91	30	18	148
	Unknown	8	181	145	141	475
	Sub-total	70	1,037	709	423	2,239
Other motor	Learner	0	0	0	1	1
vehicle driver	Provisional ${ }^{3}$	0	1	2	2	5
	Standard	1	6	22	20	49
	Unlicensed ${ }^{2}$	1	2	1	0	4
	Unknown	2	78	122	123	325
	Sub-total	4	87	147	146	384
MOTOR VEHICLE CONTROLLERS:	TOTAL	476	6,243	8,780	7,564	23,063

[^17]Table 23a: Motor vehicle controllers involved, degree of crash, BAC ${ }^{1}$, sex, age
DEGREE OF CRASH: FATAL

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Legal	M	0	0	9	31	27	50	44	60	35	17	14	0	287
	F	0	0	4	9	8	16	15	10	15	7	3	0	87
	Sub-total ${ }^{2}$	0	0	13	40	35	66	59	70	50	24	17	0	374
. $001-.019^{3}$	M	0	0	0	1	0	0	0	0	0	0	0	0	1
	F	0	0	0	0	0	1	0	0	0	0	0	0	1
	Sub-total ${ }^{2}$	0	0	0	1	0	1	0	0	0	0	0	0	2
. $020-.049^{4}$	M	0	0	1	0	1	0	0	0	0	0	0	0	2
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	1	0	1	0	0	0	0	0	0	0	2
. $050-.079$	M	0	0	0	1	0	0	0	1	0	0	0	0	2
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	1	0	0	0	1	0	0	0	0	2
. $080-.149$	M	0	0	1	2	1	0	2	1	0	1	0	0	8
	F	0	0	0	1	0	0	1	1	0	0	0	0	3
	Sub-total ${ }^{2}$	0	0	1	3	1	0	3	2	0	1	0	0	11
$\geq .150$	M	0	0	1	8	2	4	10	6	1	2	0	0	34
	F	0	0	0	0	1	0	2	1	0	0	0	0	4
	Sub-total ${ }^{2}$	0	0	1	8	3	4	12	7	1	2	0	0	38
Unknown	M	0	0	2	4	2	3	2	6	7	4	3	2	35
	F	0	0	2	2	0	1	2	1	0	1	0	0	9
	Sub-total ${ }^{2}$	0	0	4	6	2	4	4	7	7	5	3	5	47
MOTOR VEHICLE	M	0	0	14	47	33	57	58	74	43	24	17	2	369
CONTROLLERS:	F	0	0	6	12	9	18	20	13	15	8	3	0	104
	TOTAL ${ }^{2}$	0	0	20	59	42	75	78	87	58	32	20	5	476

[^18]Table 23b: Motor vehicle controllers involved, degree of crash, BAC ${ }^{1}$, sex, age
DEGREE OF CRASH: SERIOUS INJURY

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Legal	M	0	24	297	341	236	557	470	453	316	172	105	9	2,980
	F	0	8	137	163	109	249	214	190	166	115	61	5	1,417
	Sub-total ${ }^{2}$	0	32	434	504	345	806	684	643	482	287	166	15	4,398
. $001-.019^{3}$	M	0	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
. $020-.049^{4}$	M	0	0	2	4	2	0	0	0	0	0	0	0	8
	F	0	0	1	1	0	0	0	0	0	0	0	0	2
	Sub-total ${ }^{2}$	0	0	3	5	2	0	0	0	0	0	0	0	10
. $050-.079$	M	0	1	1	7	5	8	2	2	6	0	0	1	33
	F	0	0	2	0	0	3	0	2	1	0	0	0	8
	Sub-total ${ }^{2}$	0	1	3	7	5	11	2	4	7	0	0	1	41
. $080-.149$	M	0	0	10	20	12	14	23	8	4	1	0	0	92
	F	0	0	0	2	2	2	5	2	1	2	0	0	16
	Sub-total ${ }^{2}$	0	0	10	22	14	16	28	10	5	3	0	0	108
$\geq .150$	M	0	0	2	14	7	19	16	18	2	0	0	0	78
	F	0	0	2	3	3	4	9	1	1	1	0	0	24
	Sub-total ${ }^{2}$	0	0	4	17	10	23	25	19	3	1	0	0	102
Unknown	M	0	14	88	110	76	186	136	145	79	66	30	49	979
	F	0	2	39	48	35	88	93	75	60	36	15	19	510
	Sub-total ${ }^{2}$	0	16	127	158	111	274	229	220	139	102	45	163	1,584
MOTOR VEHICLE	M	0	39	400	496	338	784	647	626	407	239	135	59	4,170
CONTROLLERS:	F	0	10	181	217	149	346	321	270	229	154	76	24	1,977
	TOTAL ${ }^{2}$	0	49	581	713	487	1,130	968	896	636	393	211	179	6,243

1 Blood Alcohol Concentration
2 Unknown sex included.
3 Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 23c: Motor vehicle controllers involved, degree of crash, BAC ${ }^{1}$, sex, age
DEGREE OF CRASH: MODERATE INJURY

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Legal	M	0	12	300	397	267	572	468	415	274	147	80	9	2,941
	F	0	11	209	231	138	346	285	229	169	92	35	5	1,750
	Sub-total ${ }^{2}$	0	23	509	628	405	918	754	644	443	239	115	15	4,693
. $001-.019^{3}$	M	0	0	1	0	0	0	0	0	0	0	0	0	1
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	1	0	0	0	0	0	0	0	0	0	1
. $020-.049^{4}$	M	0	0	2	2	1	0	0	0	0	0	0	0	5
	F	0	0	0	2	0	0	0	0	0	0	0	0	2
	Sub-total ${ }^{2}$	0	0	2	4	1	0	0	0	0	0	0	0	7
. $050-.079$	M	0	1	1	3	2	8	1	1	1	1	0	0	19
	F	0	0	1	1	1	3	2	0	1	0	0	0	9
	Sub-total ${ }^{2}$	0	1	2	4	3	11	3	1	2	1	0	0	28
. $080-.149$	M	0	1	14	23	14	19	11	4	1	4	0	1	92
	F	0	0	4	4	6	7	5	4	2	0	1	0	33
	Sub-total ${ }^{2}$	0	1	18	27	20	26	16	8	3	4	1	1	125
$\geq .150$	M	0	0	3	16	10	31	18	8	3	1	0	1	91
	F	0	0	2	6	1	11	10	8	2	0	0	0	40
	Sub-total ${ }^{2}$	0	0	5	22	11	42	28	16	5	1	0	1	131
Unknown	M	0	13	193	246	216	434	348	290	176	92	61	143	2,212
	F	0	5	136	184	123	285	231	171	117	72	31	50	1,405
	Sub-total ${ }^{2}$	0	18	329	430	339	719	579	461	293	164	92	371	3,795
MOTOR VEHICLE	M	0	27	514	687	510	1,064	846	718	455	245	141	154	5,361
CONTROLLERS:	F	0	16	352	428	269	652	533	412	291	164	67	55	3,239
	TOTAL ${ }^{2}$	0	43	866	1,115	779	1,716	1,380	1,130	746	409	208	388	8,780

1 Blood Alcohol Concentration.
2 Unknown sex included
3 Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 23d: Motor vehicle controllers involved, degree of crash, BAC${ }^{1}$, sex, age
DEGREE OF CRASH: MINOR/OTHER INJURY

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Legal	M	0	4	69	110	78	172	164	146	76	47	20	10	896
	F	0	4	41	48	44	99	99	70	46	29	8	2	490
	Sub-total ${ }^{2}$	0	8	110	158	122	271	263	216	122	76	28	13	1,387
. $001-.019^{3}$	M	0	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
. $020-.049^{4}$	M	0	0	0	1	0	0	0	0	0	0	0	0	1
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	1	0	0	0	0	0	0	0	0	1
. $050-.079$	M	0	0	1	2	3	1	3	0	1	0	0	0	11
	F	0	0	1	0	0	1	1	0	0	0	0	0	3
	Sub-total ${ }^{2}$	0	0	2	2	3	2	4	0	1	0	0	0	14
. $080-.149$	M	0	2	4	8	2	4	5	2	1	0	0	1	29
	F	0	0	0	1	1	2	0	2	1	1	0	0	8
	Sub-total ${ }^{2}$	0	2	4	9	3	6	5	4	2	1	0	1	37
$\geq .150$	M	0	0	3	2	7	11	4	0	1	0	0	1	29
	F	0	0	0	1	1	1	5	2	0	0	0	0	10
	Sub-total ${ }^{2}$	0	0	3	3	8	12	9	2	1	0	0	1	39
Unknown	M	0	3	212	335	304	711	554	501	306	120	51	372	3,469
	F	0	4	153	235	213	497	438	358	190	78	26	194	2,386
	Sub-total ${ }^{2}$	0	7	365	572	517	1,209	994	859	497	198	77	791	6,086
MOTOR VEHICLE	M	0	9	289	458	394	899	730	649	385	167	71	384	4,435
CONTROLLERS:	F	0	8	195	285	259	600	543	432	237	108	34	196	2,897
	TOTAL ${ }^{2}$	0	17	484	745	653	1,500	1,275	1,081	623	275	105	806	7,564

1 Blood Alcohol Concentration.
2 Unknown sex included.
3 Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 23e: Motor vehicle controllers involved, degree of crash, BAC ${ }^{1}$, sex, age

DEGREE OF CRASH: ALL CASUALTY CRASHES

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Legal	M	0	40	675	879	608	1,351	1,146	1,074	701	383	219	28	7,104
	F	0	23	391	451	299	710	613	499	396	243	107	12	3,744
	Sub-total ${ }^{2}$	0	63	1,066	1,330	907	2,061	1,760	1,573	1,097	626	326	43	10,852
. $001-.019^{3}$	M	0	0	1	1	0	0	0	0	0	0	0	0	2
	F	0	0	0	0	0	1	0	0	0	0	0	0	1
	Sub-total ${ }^{2}$	0	0	1	1	0	1	0	0	0	0	0	0	3
. $020-.049^{4}$	M	0	0	5	7	4	0	0	0	0	0	0	0	16
	F	0	0	1	3	0	0	0	0	0	0	0	0	4
	Sub-total ${ }^{2}$	0	0	6	10	4	0	0	0	0	0	0	0	20
. $050-.079$	M	0	2	3	13	10	17	6	4	8	1	0	1	65
	F	0	0	4	1	1	7	3	2	2	0	0	0	20
	Sub-total ${ }^{2}$	0	2	7	14	11	24	9	6	10	1	0	1	85
. $080-.149$	M	0	3	29	53	29	37	41	15	6	6	0	2	221
	F	0	0	4	8	9	11	11	9	4	3	1	0	60
	Sub-total ${ }^{2}$	0	3	33	61	38	48	52	24	10	9	1	2	281
$\geq .150$	M	0	0	9	40	26	65	48	32	7	3	0	2	232
	F	0	0	4	10	6	16	26	12	3	1	0	0	78
	Sub-total ${ }^{2}$	0	0	13	50	32	81	74	44	10	4	0	2	310
Unknown	M	0	30	495	695	598	1,334	1,040	942	568	282	145	566	6,695
	F	0	11	330	469	371	871	764	605	367	187	72	263	4,310
	Sub-total ${ }^{2}$	0	41	825	1,166	969	2,206	1,806	1,547	936	469	217	1,330	11,512
MOTOR VEHICLE	M	0	75	1,217	1,688	1,275	2,804	2,281	2,067	1,290	675	364	599	14,335
CONTROLLERS:	F	0	34	734	942	686	1,616	1,417	1,127	772	434	180	275	8,217
	TOTAL ${ }^{2}$	0	109	1,951	2,632	1,961	4,421	3,701	3,194	2,063	1,109	544	1,378	23,063

1 Blood Alcohol Concentration
2 Unknown sex included.
3 Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 24: Speeding motor vehicle controllers involved, degree of crash, sex, age

Degree of crash	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Fatal	M	0	0	8	24	11	18	16	11	11	6	1	1	107
	F	0	0	2	4	2	4	2	4	1	2	1	0	22
	Sub-total ${ }^{1}$	0	0	10	28	13	22	18	15	12	8	2	1	129
Serious injury	M	0	13	109	113	62	135	87	101	48	24	14	2	708
	F	0	3	26	31	30	31	33	28	21	11	6	0	220
	Sub-total ${ }^{1}$	0	16	135	144	92	166	120	129	69	35	20	4	930
Moderate injury	M	0	6	121	103	54	106	89	65	39	28	15	10	636
	F	0	6	49	39	30	58	33	16	23	8	3	0	265
	Sub-total ${ }^{1}$	0	12	170	142	84	164	122	81	62	36	18	12	903
Minor/Other injury	M	0	3	31	43	44	44	50	34	22	9	3	15	298
	F	0	3	19	21	10	15	14	11	11	3	3	2	112
	Sub-total ${ }^{1}$	0	6	50	64	54	59	64	45	33	12	6	22	415
SPEEDING														
MOTOR VEHICLE	M	0	22	269	283	171	303	242	211	120	67	33	28	1,749
CONTROLLERS:	F	0	12	96	95	72	108	82	59	56	24	13	2	619
	TOTAL ${ }^{1}$	0	34	365	378	243	411	324	270	176	91	46	39	2,377

1 Unknown sex included.
The identification of speeding involvement cannot always be determined from police reports of road crashes. The Centre for Road Safety has therefore established criteria for determining if a crash is likely to have involved this factor. The criteria used for this purpose are shown on page 11.

Table 25: Fatigued motor vehicle controllers involved, degree of crash, sex, age

Degree of crash	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	Unknown	
Fatal	M	0	0	2	3	1	7	4	12	9	4	0	0	42
	F	0	0	0	2	3	3	2	1	1	0	1	0	13
	Sub-total ${ }^{1}$	0	0	2	5	4	10	6	13	10	4	1	0	55
Serious injury	M	0	4	45	44	21	58	63	40	24	19	14	0	332
	F	0	0	15	15	6	10	19	9	13	17	10	0	114
	Sub-total ${ }^{1}$	0	4	60	59	27	68	82	49	37	36	24	0	446
Moderate injury	M	0	6	41	56	38	75	46	31	18	17	7	5	340
	F	0	2	26	21	12	28	21	18	6	11	2	2	149
	Sub-total ${ }^{1}$	0	8	67	77	50	103	67	49	24	28	9	9	491
Minor/Other injury	M	0	0	10	21	14	24	20	11	12	3	2	8	125
	F	0	0	4	13	4	7	8	2	2	2	2	1	45
	Sub-total ${ }^{1}$	0	0	14	34	18	31	28	13	14	5	4	12	173
FAtigued														
MOTOR VEHICLE	M	0	10	98	124	74	164	133	94	63	43	23	13	839
CONTROLLERS:	F	0	2	45	51	25	48	50	30	22	30	15	3	321
	TOTAL ${ }^{1}$	0	12	143	175	99	212	183	124	85	73	38	21	1,165

1 Unknown sex included.
The identification of fatigue involvement cannot always be determined from police reports of road crashes. The Centre for Road Safety has therefore established criteria for determining if a crash is likely to have involved this factor. The criteria used for this purpose are shown on page 11.

Table 26a: Crashes, location type, degree of crash

Location type	Degree of crash				Total casualty crashes
	Fatal crash	Serious injury crash	Moderate injury crash	Minor/Other injury crash	
INTERSECTION					
Cross	18	601	893	772	2,284
'T'	35	982	1,267	1,208	3,492
'Y'	0	7	9	6	22
Multiple	1	6	16	6	29
Roundabout	5	190	331	243	769
Sub-total	59	1,786	2,516	2,235	6,596
NON-INTERSECTION					
One-way	1	15	26	31	73
2-way undivided	210	1,717	2,033	1,149	5,109
Dual carriageway (nonfreeway)	45	447	505	540	1,537
Dual carriageway (freeway)	13	144	160	179	496
Other limited access	0	4	3	9	16
Other	1	27	43	21	92
Unknown	0	0	0	0	0
Sub-total	270	2,354	2,770	1,929	7,323
CRASHES: TOTAL	329	4,140	5,286	4,164	13,919

Table 26b: Crashes, feature of location, degree of crash

	Degree of crash				
	Fatal crash	Serious injury crash	Moderate injury crash	Minor/Other injury crash	Total casualty crashes
Beature of location	11	64	104	92	271
Causeway	0	4	1	2	7
Railway crossing	1	2	0	4	7
Entrance/driveway	13	237	330	228	808
Hazardous road surface	20	163	111	66	360
Roadworks/detour/diversion	4	69	87	31	191
Previous crash	3	8	12	3	26

[^19]Table 27: Crashes, area, speed limit, degree of crash

Area ${ }^{1} /$ speed limit	Degree of crash				Total casualty crashes
	Fatal crash	Serious injury crash	Moderate injury crash	Minor/Other injury crash	
METROPOLITAN					
$30 \mathrm{~km} / \mathrm{h}$ or less	0	5	6	6	17
$40 \mathrm{~km} / \mathrm{h}$	7	112	153	164	436
$50 \mathrm{~km} / \mathrm{h}$	25	900	1,081	1,027	3,033
$60 \mathrm{~km} / \mathrm{h}$	40	976	1,118	1,196	3,330
70 km/h	12	252	309	425	998
$80 \mathrm{~km} / \mathrm{h}$	13	181	219	222	635
90 km/h	2	26	22	21	71
$100 \mathrm{~km} / \mathrm{h}$	4	52	59	64	179
$110 \mathrm{~km} / \mathrm{h}$	7	24	31	27	89
Unknown	0	0	1	0	1
Sub-total	110	2,528	2,999	3,152	8,789
COUNTRY					
$30 \mathrm{~km} / \mathrm{h}$ or less	0	4	0	4	8
$40 \mathrm{~km} / \mathrm{h}$	0	27	47	20	94
$50 \mathrm{~km} / \mathrm{h}$	22	362	702	273	1,359
$60 \mathrm{~km} / \mathrm{h}$	10	238	409	180	837
$70 \mathrm{~km} / \mathrm{h}$	4	65	89	37	195
$80 \mathrm{~km} / \mathrm{h}$	46	307	335	137	825
$90 \mathrm{~km} / \mathrm{h}$	6	28	31	16	81
$100 \mathrm{~km} / \mathrm{h}$	101	446	525	252	1,324
$110 \mathrm{~km} / \mathrm{h}$	30	134	148	93	405
Unknown	0	1	1	0	2
Sub-total	219	1,612	2,287	1,012	5,130
CRASHES: TOTAL	329	4,140	5,286	4,164	13,919

[^20]Table 28: Crashes, alignment, surface condition, degree of crash

Alignment/surface condition	Degree of crash				Total casualty crashes
	Fatal crash	Serious injury crash	Moderate injury crash	Minor/Other injury crash	
STRAIGHT					
Wet	16	292	412	329	1,049
Dry	170	2,714	3,730	3,134	9,748
Snow or ice	0	2	1	4	7
Unknown	3	21	15	15	54
Sub-total	189	3,029	4,158	3,482	10,858
CURVE					
Wet	15	181	199	95	490
Dry	122	918	914	583	2,537
Snow or ice	0	2	7	3	12
Unknown	3	10	7	1	21
Sub-total	140	1,111	1,127	682	3,060
TOTAL CRASHES ${ }^{1}$					
Wet	31	473	611	424	1,539
Dry	292	3,632	4,645	3,717	12,286
Snow or ice	0	4	8	7	19
Unknown	6	31	22	16	75
CRASHES: TOTAL	329	4,140	5,286	4,164	13,919

[^21]Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
SYDNEY REGION										
Sydney Metropolitan Area										
Bayside	3	72	125	132	332	4	73	154	161	392
Blacktown	9	162	188	211	570	11	179	245	272	707
Burwood	0	21	33	23	77	0	22	38	29	89
Camden	2	35	43	33	113	2	37	58	49	146
Campbelltown	5	80	78	63	226	5	84	105	86	280
Canada Bay	2	31	55	54	142	2	32	63	71	168
Canterbury-Bankstown	7	213	235	279	734	7	237	317	339	900
Cumberland	2	135	148	181	466	2	150	187	230	569
Fairfield	6	115	136	142	399	7	127	185	175	494
Georges River	4	57	81	74	216	6	63	98	93	260
Hornsby	3	65	61	86	215	3	68	82	111	264
Hunters Hill	1	9	3	7	20	1	10	4	8	23
Inner West	3	90	155	132	380	3	99	177	167	446
Ku-ring-gai	0	54	47	52	153	0	61	60	72	193
Lane Cove	1	18	18	15	52	1	20	24	23	68
Liverpool	3	139	144	174	460	3	153	193	240	589
Mosman	0	12	6	19	37	0	12	7	23	42
North Sydney	2	37	22	37	98	2	41	34	40	117
Northern Beaches	4	83	56	184	327	4	88	60	214	366

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2}$ K - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	0	Total killed \& injured
SYDNEY REGION (cont.)										
Parramatta	9	120	124	185	438	9	137	190	236	572
Penrith	1	88	158	91	338	1	99	201	131	432
Randwick	3	81	80	73	237	4	84	95	90	273
Ryde	2	56	70	92	220	2	59	92	111	264
Strathfield	1	27	35	47	110	1	27	45	68	141
Sutherland	5	80	96	69	250	5	86	119	98	308
Sydney	4	144	215	212	575	4	147	254	259	664
The Hills	1	68	67	98	234	1	71	88	118	278
Waverley	2	31	35	33	101	2	31	38	36	107
Willoughby	1	38	39	52	130	1	38	48	63	150
Woollahra	0	25	24	28	77	0	26	26	37	89
Sydney Metropolitan										
Area Sub-total	86	2,186	2,577	2,878	7,727	93	2,361	3,287	3,650	9,391

[^22]Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
SYDNEY REGION (cont.)										
Outer Sydney Area										
Blue Mountains	1	34	61	26	122	1	37	72	37	147
Central Coast	9	165	230	139	543	9	186	316	189	700
Hawkesbury	6	52	76	29	163	7	57	104	44	212
Wollondilly	2	39	28	23	92	2	49	34	29	114
Outer Sydney										
Area Sub-total	18	290	395	217	920	19	329	526	299	1,173
TOTAL	104	2,476	2,972	3,095	8,647	112	2,690	3,813	3,949	10,564

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
HUNTER REGION										
Cessnock	1	41	59	23	124	1	44	74	32	151
Dungog	0	10	4	1	15	0	10	9	2	21
Lake Macquarie	8	92	123	69	292	8	106	169	89	372
Maitland	3	26	49	19	97	3	30	60	30	123
Mid-Coast	9	70	75	27	181	10	84	101	51	246
Muswellbrook	1	11	20	3	35	1	11	34	9	55
Newcastle	7	88	129	85	309	7	95	163	127	392
Port Stephens	8	43	38	17	106	9	54	53	25	141
Singleton	7	24	36	19	86	7	29	50	40	126
Upper Hunter	0	10	16	1	27	0	10	20	4	34
TOTAL	44	415	549	264	1,272	46	473	733	409	1,661

ILLAWARRA REGION

Kiama	1	16	16	2	35	1	16	22	3	42
Shellharbour	2	29	38	30	99	2	34	46	38	120
Shoalhaven	8	56	93	32	189	8	64	133	61	266
Wingecarribee	3	46	37	18	104	3	52	50	34	139
Wollongong	7	133	132	90	362	9	145	163	124	441
TOTAL	21	280	316	172	789	23	311	414	260	1,008

[^23]${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
NORTH COAST REGION										
Ballina	1	26	21	14	62	1	29	34	31	95
Bellingen	4	18	13	3	38	4	21	16	4	45
Byron	4	16	50	22	92	5	17	58	32	112
Clarence Valley	10	33	74	19	136	10	42	107	47	206
Coffs Harbour	7	53	57	30	147	7	58	79	42	186
Kempsey	5	23	27	8	63	6	27	37	9	79
Kyogle	2	18	13	9	42	2	21	14	10	47
Lismore	6	40	38	19	103	6	45	48	30	129
Lord Howe Island	0	0	0	2	2	0	0	0	2	2
Nambucca Valley	5	13	13	2	33	5	14	17	4	40
Port Macquarie-Hastings	2	56	68	15	141	2	60	85	34	181
Richmond Valley	2	25	24	11	62	3	31	35	18	87
Tweed	7	46	77	46	176	7	50	101	69	227
TOTAL	55	367	475	200	1,097	58	415	631	332	1,436

[^24]Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
NEW ENGLAND REGION										
Armidale Regional	1	15	23	8	47	1	17	28	12	58
Glen Innes Severn	2	8	9	2	21	2	10	9	3	24
Gunnedah	0	8	9	6	23	0	10	11	7	28
Gwydir	0	0	2	3	5	0	0	3	5	8
Inverell	0	10	10	4	24	0	10	17	9	36
Liverpool Plains	0	7	6	1	14	0	9	8	1	18
Moree Plains	1	4	12	7	24	1	5	18	12	36
Narrabri	3	9	16	3	31	3	12	20	4	39
Tamworth Regional	5	41	45	20	111	5	49	63	41	158
Tenterfield	0	5	10	7	22	0	5	11	30	46
Uralla	0	6	13	1	20	0	7	14	6	27
Walcha	1	6	4	2	13	2	10	8	2	22
TOTAL	13	119	159	64	355	14	144	210	132	500

[^25]Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
ORANA REGION										
Bogan	2	2	3	1	8	2	3	5	1	11
Bourke	0	4	1	1	6	0	4	4	2	10
Brewarrina	3	1	1	0	5	3	1	3	0	7
Cobar	0	4	3	5	12	0	4	5	6	15
Coonamble	0	4	4	0	8	0	4	5	0	9
Dubbo Regional	6	34	52	16	108	7	41	74	29	151
Gilgandra	1	7	4	3	15	1	10	7	3	21
Mid-Western Regional	5	19	35	17	76	5	22	45	22	94
Narromine	0	6	6	1	13	0	8	9	2	19
Walgett	1	7	4	1	13	1	8	6	1	16
Warren	0	3	2	1	6	0	6	3	2	11
Warrumbungle	3	11	14	3	31	4	16	18	8	46
TOTAL	21	102	129	49	301	23	127	184	76	410

[^26]Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
CENTRAL WESTERN REGION										
Bathurst Regional	2	20	49	7	78	2	25	63	13	103
Bland	1	5	13	3	22	1	6	15	5	27
Blayney	2	8	8	5	23	2	11	9	7	29
Cabonne	3	17	13	3	36	3	20	18	5	46
Cowra	1	7	9	5	22	1	10	10	7	28
Forbes	1	7	20	4	32	1	11	22	9	43
Lachlan	1	4	5	3	13	1	4	7	3	15
Lithgow	1	20	33	6	60	1	21	43	10	75
Oberon	2	8	13	3	26	2	8	17	5	32
Orange	1	21	40	11	73	1	23	53	21	98
Parkes	2	12	22	5	41	2	14	25	8	49
Weddin	1	1	3	3	8	1	1	3	4	9
TOTAL	18	130	228	58	434	18	154	285	97	554

[^27]Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
SOUTH-EASTERN REGION										
Bega Valley	3	21	32	13	69	3	23	40	22	88
Eurobodalla	5	18	45	13	81	5	22	53	18	98
Goulburn Mulwaree	2	11	40	15	68	2	13	50	28	93
Hilltops	2	8	35	12	57	3	8	50	44	105
Queanbeyan-Palerang Regional	5	6	40	39	90	5	7	46	54	112
Snowy Monaro Regional	5	8	25	20	58	7	8	32	31	78
Upper Lachlan	5	8	12	11	36	5	10	18	24	57
Yass Valley	1	1	25	15	42	1	1	28	31	61
TOTAL	28	81	254	138	501	31	92	317	252	692

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
RIVERINA REGION										
Carrathool	1	4	4	1	10	1	4	4	2	11
Coolamon	0	3	3	0	6	0	4	5	1	10
Cootamundra-Gundagai	3	15	9	6	33	3	19	17	11	50
Griffith	0	11	14	8	33	0	14	14	15	43
Hay	1	1	0	1	3	1	1	1	1	4
Junee	1	3	4	2	10	1	3	4	3	11
Leeton	0	7	10	2	19	0	10	17	5	32
Lockhart	0	5	1	0	6	0	6	2	1	9
Murrumbidgee	2	4	2	2	10	2	4	6	7	19
Narrandera	1	6	5	3	15	1	6	10	3	20
Temora	1	3	4	4	12	2	4	8	8	22
Wagga Wagga	3	31	40	21	95	3	39	48	32	122
TOTAL	13	93	96	50	252	14	114	136	89	353

[^28]Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
MURRAY REGION										
Albury	1	21	35	15	72	1	21	43	23	88
Balranald	2	1	2	1	6	3	1	2	5	11
Berrigan	1	0	2	5	8	1	0	2	6	9
Edward River	0	1	5	0	6	0	1	5	5	11
Federation	0	12	6	4	22	0	13	9	5	27
Greater Hume	4	15	9	8	36	5	19	16	14	54
Murray River	0	3	7	11	21	0	3	8	14	25
Snowy Valleys	1	14	13	13	41	1	16	20	24	61
Wentworth	1	0	1	9	11	1	0	1	13	15
TOTAL	10	67	80	66	223	12	74	106	109	301

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 29: Crashes, casualties, region, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
FAR WESTERN REGION										
Broken Hill	0	3	17	4	24	0	3	22	7	32
Central Darling	1	3	7	3	14	1	4	11	7	23
Unincorporated Area	1	4	4	1	10	1	5	6	2	14
TOTAL	2	10	28	8	48	2	12	39	16	69
METROPOLITAN ${ }^{3}$:										
TOTAL	104	2,476	2,972	3,095	8,647	112	2,690	3,813	3,949	10,564
COUNTRY ${ }^{3}$: TOTAL	225	1,664	2,314	1,069	5,272	241	1,916	3,055	1,772	6,984
NSW STATE										
TOTAL	329	4,140	5,286	4,164	13,919	353	4,606	6,868	5,721	17,548

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2}$ K - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.
${ }^{3}$ 'Metropolitan' is comprised of the Sydney, Newcastle and Wollongong Metropolitan Areas.
'Country' is comprised of all other areas of the State

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
FREEWAYS AND MOTORWAYS										
M2 MOTORWAY includes LANE COVE TUNNEL (ARTARMON to BAULKHAM HILLS)										
Willoughby	0	1	1	0	2	0	1	1	0	2
Lane Cove	0	0	0	0	0	0	0	0	0	0
Ryde	0	5	1	2	8	0	5	2	3	10
Hornsby	0	1	0	1	2	0	1	0	1	2
Parramatta	0	5	1	2	8	0	6	1	2	9
The Hills	0	3	1	4	8	0	3	1	4	8
Sub-total	0	15	4	9	28	0	16	5	10	31
SYDNEY-NEWCASTLE FREEWAY (WAHROONGA to BERESFIELD)										
Ku-ring-gai	0	1	1	1	3	0	1	1	2	4
Hornsby	2	11	7	9	29	2	12	10	10	34
Central Coast	0	13	21	14	48	0	13	29	20	62
Lake Macquarie	3	6	7	8	24	3	6	9	11	29
Cessnock	0	0	0	0	0	0	0	0	0	0
Newcastle	0	3	0	0	3	0	3	0	0	3
Sub-total	5	34	36	32	107	5	35	49	43	132

[^29]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
M4 MOTORWAY (CONCORD to LAPSTONE)										
Canada Bay	0	0	0	1	1	0	0	0	1	1
Strathfield	0	2	1	0	3	0	2	1	0	3
Parramatta	2	9	8	18	37	2	10	19	20	51
Cumberland	0	6	8	8	22	0	6	10	13	29
Blacktown	0	7	4	16	27	0	7	4	19	30
Penrith	0	4	12	8	24	0	5	14	11	30
Blue Mountains	0	0	0	0	0	0	0	0	0	0
Sub-total	2	28	33	51	114	2	30	48	64	144
M5 MOTORWAY (SYDNEY AIRPORT to PRESTONS)										
Bayside	0	4	5	2	11	0	4	5	3	12
Georges River	0	0	0	0	0	0	0	0	0	0
Canterbury-Bankstown	2	7	14	21	44	2	12	21	33	68
Liverpool	0	11	7	12	30	0	13	10	17	40
Campbelltown	0	0	0	0	0	0	0	0	0	0
Sub-total	2	22	26	35	85	2	29	36	53	120

[^30]${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
SOUTHERN FREEWAY (WATERFALL to BULLI HEIGHTS \& NTH WOLLONGONG to YALLAH)										
Sutherland	0	0	0	0	0	0	0	0	0	0
Wollongong	2	13	17	5	37	4	15	27	9	55
Sub-total	2	13	17	5	37	4	15	27	9	55
M7 WESTLINK (BAULKHAM HILLS to PRESTONS)										
The Hills	0	0	0	0	0	0	0	0	0	0
Blacktown	0	5	12	10	27	0	6	13	12	31
Fairfield	0	1	2	4	7	0	1	2	6	9
Liverpool	0	2	7	1	10	0	3	7	2	12
Sub-total	0	8	21	15	44	0	10	22	20	52

[^31]${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
EASTERN DISTRIBUTOR (WOOLLOOMOOLOO to KENSINGTON)										
Sydney	0	2	3	5	10	0	2	5	9	16
Randwick	0	0	0	0	0	0	0	0	0	0
Sub-total	0	2	3	5	10	0	2	5	9	16
CROSS CITY TUNNEL										
Sydney	0	0	0	0	0	0	0	0	0	0
Sub-total	0	0	0	0	0	0	0	0	0	0
HUNTER EXPRESSWAY (SEAHAMPTON to LOWER BELFORD)										
Lake Macquarie	0	2	3	0	5	0	2	3	0	5
Cessnock	0	5	2	2	9	0	6	5	2	13
Maitland	0	0	0	0	0	0	0	0	0	0
Singleton	0	1	0	2	3	0	1	0	3	4
Sub-total	0	8	5	4	17	0	9	8	5	22
SYDNEY HARBOUR TUNNEL										
Sydney	0	2	0	0	2	0	2	0	1	3
North Sydney	0	1	1	0	2	0	1	2	0	3
Sub-total	0	3	1	0	4	0	3	2	1	6
FREEWAYS/MOTORWAYS:										
TOTAL	11	133	146	156	446	13	149	202	214	578

[^32]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	0	Total killed \& injured
STATE HIGHWAYS										
PRINCES (State Highway (SH) 1) (SYDNEY to Victorian border near EDEN)										
Sydney	0	5	5	4	14	0	5	7	6	18
Inner West	0	6	10	13	29	0	6	13	16	35
Bayside	1	4	15	17	37	1	4	17	18	40
Georges River	0	3	14	9	26	0	3	15	12	30
Sutherland	0	14	13	18	45	0	16	16	27	59
Wollongong	0	21	15	16	52	0	22	19	22	63
Shellharbour	1	7	6	10	24	1	11	9	14	35
Kiama	0	5	4	0	9	0	5	6	0	11
Shoalhaven	1	14	38	8	61	1	19	60	24	104
Eurobodalla	3	11	15	7	36	3	13	20	11	47
Bega Valley	0	7	9	4	20	0	7	14	7	28
Sub-total	6	97	144	106	353	6	111	196	157	470

${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
HUME (SH 2) (ASHFIELD to ALBURY)										
Inner West	0	5	9	2	16	0	5	13	2	20
Burwood	0	6	4	5	15	0	6	4	5	15
Strathfield	0	2	4	7	13	0	2	4	13	19
Canterbury-Bankstown	0	18	19	30	67	0	20	28	36	84
Fairfield	1	4	9	8	22	1	4	11	10	26
Liverpool	0	14	27	34	75	0	16	32	47	95
Campbelltown	2	2	7	11	22	2	3	7	13	25
Wollondilly	0	5	4	5	14	0	8	5	6	19
Wingecarribee	1	14	7	4	26	1	18	10	8	37
Goulburn Mulwaree	0	5	5	5	15	0	5	7	11	23
Upper Lachlan	1	0	5	3	9	1	0	7	8	16
Yass Valley	0	1	6	4	11	0	1	6	6	13
Hilltops	0	2	2	2	6	0	2	2	2	6
Cootamundra-Gundagai	2	7	4	3	16	2	11	7	4	24
Wagga Wagga	0	2	2	3	7	0	4	2	4	10
Greater Hume	3	5	3	5	16	4	8	6	9	27
Albury	0	4	1	2	7	0	4	1	2	7
Sub-total	10	96	118	133	357	11	117	152	186	466

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2}$ K - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
FEDERAL (SH 3) (Hume Hwy near GOULBURN to ACT Border near SUTTON)										
Goulburn Mulwaree	1	0	1	1	3	1	0	1	3	5
Upper Lachlan	0	1	0	2	3	0	1	0	2	3
Queanbeyan-Palerang Regional	1	1	2	4	8	1	1	3	6	11
Yass Valley	0	0	2	0	2	0	0	3	0	3
Sub-total	2	2	5	7	16	2	2	7	11	22
SNOWY MOUNTAINS (SH 4) (Princes Hwy near BEGA to Hume Hwy near GUNDAGAI)										
Bega Valley	0	1	2	0	3	0	1	2	0	3
Snowy Monaro Regional	1	1	3	2	7	2	1	4	5	12
Snowy Valleys	1	3	3	2	9	1	5	4	3	13
Cootamundra-Gundagai	0	0	0	0	0	0	0	0	0	0
Sub-total	2	5	8	4	19	3	7	10	8	28

[^33]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
GREAT WESTERN (SH 5) (SYDNEY to BATHURST)										
Sydney	1	2	12	7	22	1	3	19	8	31
Inner West	0	11	12	20	43	0	16	14	27	57
Canada Bay	0	2	5	3	10	0	2	5	3	10
Burwood	0	3	3	3	9	0	3	3	4	10
Strathfield	0	10	6	7	23	0	10	11	12	33
Cumberland	0	14	12	28	54	0	17	12	34	63
Parramatta	1	7	11	15	34	1	7	17	22	47
Blacktown	0	9	12	14	35	0	9	17	18	44
Penrith	0	10	21	17	48	0	11	27	23	61
Blue Mountains	1	20	28	15	64	1	21	35	19	76
Lithgow	1	2	13	1	17	1	2	15	2	20
Bathurst Regional	1	5	13	1	20	1	6	18	1	26
Sub-total	5	95	148	131	379	5	107	193	173	478

[^34]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
MID WESTERN (SH 6) (BATHURST to HAY)										
Bathurst Regional	0	1	0	0	1	0	3	0	0	3
Blayney	1	2	3	1	7	1	4	3	1	9
Cowra	0	2	3	2	7	0	2	4	3	9
Weddin	1	0	0	1	2	1	0	0	2	3
Bland	1	0	1	0	2	1	0	1	0	2
Carrathool	0	2	2	0	4	0	2	2	1	5
Hay	0	0	0	0	0	0	0	0	0	0
Sub-total	3	7	9	4	23	3	11	10	7	31
MITCHELL (SH 7) (BATHURST to BARRINGUN)										
Bathurst Regional	0	0	5	1	6	0	0	5	2	7
Cabonne	1	2	2	0	5	1	2	5	0	8
Orange	0	7	10	1	18	0	8	16	3	27
Dubbo Regional	2	7	16	5	30	3	9	27	12	51
Narromine	0	1	1	0	2	0	3	3	0	6
Warren	0	0	0	0	0	0	0	0	0	0
Bogan	0	0	2	0	2	0	0	3	0	3
Bourke	0	0	0	1	1	0	0	0	1	1
Sub-total	3	17	36	8	64	4	22	59	18	103

[^35]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
BARRIER (SH 8) (NYNGAN to South Australian border near COCKBURN)										
Bogan	1	2	0	1	4	1	3	0	1	5
Cobar	0	2	1	1	4	0	2	2	1	5
Central Darling	1	0	2	2	5	1	0	3	4	8
Unincorporated	1	1	1	0	3	1	2	2	0	5
Broken Hill	0	1	4	0	5	0	1	5	1	7
Sub-total	3	6	8	4	21	3	8	12	7	30

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
NEW ENGLAND (SH 9) (HEXHAM to Queensland border at WALLANGARRA)										
Newcastle	0	1	3	5	9	0	1	4	6	11
Maitland	0	7	9	3	19	0	7	11	6	24
Cessnock	0	1	0	0	1	0	1	0	0	1
Singleton	4	5	14	6	29	4	10	20	22	56
Muswellbrook	0	4	8	1	13	0	4	19	6	29
Upper Hunter	0	6	4	0	10	0	6	6	0	12
Liverpool Plains	0	2	1	0	3	0	2	2	0	4
Tamworth Regional	2	7	4	7	20	2	8	10	10	30
Uralla	0	0	2	0	2	0	0	2	0	2
Armidale Regional	0	1	7	2	10	0	2	9	2	13
Glen Innes Severn	1	2	2	0	5	1	4	2	0	7
Tenterfield	0	0	2	0	2	0	0	2	0	2
Sub-total	7	36	56	24	123	7	45	87	52	191

[^36]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
PACIFIC (SH 10) (NORTH SYDNEY to TWEED HEADS)										
North Sydney	1	5	4	2	12	1	5	5	2	13
Lane Cove	0	2	4	6	12	0	3	4	8	15
Willoughby	1	6	8	7	22	1	6	11	9	27
Ku-ring-gai	0	9	11	13	33	0	10	14	15	39
Hornsby	0	10	10	10	30	0	10	13	10	33
Central Coast	1	26	25	23	75	1	28	47	32	108
Lake Macquarie	2	8	7	4	21	2	15	13	4	34
Newcastle	1	8	15	7	31	1	9	25	19	54
Port Stephens	1	4	6	1	12	2	5	7	2	16
Mid-Coast	3	14	13	7	37	4	23	19	10	56
Port Macquarie-Hastings	0	14	13	3	30	0	15	15	6	36
Kempsey	2	4	7	0	13	2	5	9	0	16
Nambucca Valley	1	1	3	0	5	1	1	3	1	6
Bellingen	1	2	2	0	5	1	2	3	0	6
Coffs Harbour	3	22	10	10	45	3	25	17	14	59
Clarence Valley	3	8	23	6	40	3	12	38	22	75
Richmond Valley	0	2	5	3	10	0	3	7	3	13
Ballina	0	5	2	2	9	0	8	5	4	17
Byron	0	2	8	4	14	0	2	8	7	17
Tweed	0	8	10	7	25	0	9	18	10	37
Sub-total	20	160	186	115	481	22	196	281	178	677

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
OXLEY (SH 11) (PORT MACQUARIE to NEVERTIRE)										
Port Macquarie-Hastings	2	9	4	3	18	2	9	8	3	22
Walcha	1	1	1	1	4	2	3	1	1	7
Tamworth Regional	0	3	8	2	13	0	4	8	7	19
Gunnedah	0	2	5	1	8	0	2	7	1	10
Warrumbungle	0	1	1	0	2	0	3	1	2	6
Gilgandra	0	1	0	0	1	0	1	0	0	1
Warren	0	0	2	0	2	0	0	2	0	2
Sub-total	3	17	21	7	48	4	22	27	14	67
GWYDIR (SH 12) (SOUTH GRAFTON to WALGETT)										
Clarence Valley	0	1	3	0	4	0	1	4	1	6
Glen Innes Severn	1	4	3	1	9	1	4	3	2	10
Inverell	0	3	3	1	7	0	3	6	1	10
Gwydir	0	0	0	0	0	0	0	0	0	0
Moree Plains	0	0	2	0	2	0	0	2	0	2
Walgett	0	0	0	0	0	0	0	0	0	0
Sub-total	1	8	11	2	22	1	8	15	4	28

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	0	Total killed \& injured
CUMBERLAND (SH 13) (LIVERPOOL to WAHROONGA)										
Liverpool	0	0	2	4	6	0	0	2	4	6
Fairfield	0	6	10	13	29	0	6	11	15	32
Cumberland	0	7	10	7	24	0	9	12	10	31
Parramatta	2	10	11	18	41	2	14	15	25	56
The Hills	0	3	0	3	6	0	3	1	3	7
Hornsby	1	7	15	23	46	1	7	18	31	57
Sub-total	3	33	48	68	152	3	39	59	88	189
STURT (SH 14) (Hume Hwy near GUNDAGAI to MILDURA)										
Wagga Wagga	1	5	5	2	13	1	7	8	7	23
Narrandera	1	3	2	2	8	1	3	7	2	13
Murrumbidgee	1	0	0	0	1	1	0	0	0	1
Hay	1	0	0	0	1	1	0	1	0	2
Murray River	0	0	2	0	2	0	0	2	0	2
Balranald	1	0	2	1	4	1	0	2	1	4
Wentworth	0	0	0	2	2	0	0	0	2	2
Sub-total	5	8	11	7	31	5	10	20	12	47

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
BARTON (SH 15) (Hume Hwy near YASS to ACT border near HALL)										
Yass Valley	0	0	3	5	8	0	0	3	13	16
Sub-total	0	0	3	5	8	0	0	3	13	16
BRUXNER (SH 16) (Pacific Hwy near BALLINA to New England Hwy, TENTERFIELD)										
Ballina	0	3	3	1	7	0	3	5	1	9
Lismore	1	8	6	3	18	1	8	7	5	21
Richmond Valley	1	2	6	1	10	2	3	7	4	16
Kyogle	1	2	3	2	8	1	2	3	2	8
Tenterfield	0	2	3	2	7	0	2	4	22	28
Sub-total	3	17	21	9	50	4	18	26	34	82

[^37]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
NEWELL (SH 17) (TOCUMWAL to Queensland border at GOONDIWINDI)										
Berrigan	0	0	0	0	0	0	0	0	0	0
Murrumbidgee	0	0	1	1	2	0	0	1	3	4
Federation	0	2	0	1	3	0	3	0	2	5
Narrandera	0	1	2	1	4	0	1	2	1	4
Coolamon	0	0	3	0	3	0	0	3	0	3
Bland	0	2	6	2	10	0	3	8	4	15
Weddin	0	1	0	0	1	0	1	0	0	1
Forbes	0	1	2	2	5	0	1	2	5	8
Parkes	0	5	4	2	11	0	6	4	4	14
Narromine	0	1	2	0	3	0	1	2	1	4
Dubbo Regional	1	9	4	3	17	1	11	7	8	27
Gilgandra	1	4	2	1	8	1	6	4	1	12
Warrumbungle	0	2	2	0	4	0	2	3	1	6
Narrabri	0	5	2	2	9	0	5	4	3	12
Moree Plains	0	2	6	4	12	0	2	9	8	19
Sub-total	2	35	36	19	92	2	42	49	41	134

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	0	Total killed \& injured
CASTLEREAGH (SH 18) (MARRANGAROO to Queensland border near HEBEL)										
Lithgow	0	3	2	0	5	0	3	3	0	6
Mid-Western Regional	1	2	10	6	19	1	3	14	6	24
Warrumbungle	1	1	2	1	5	1	2	3	1	7
Gilgandra	0	2	1	1	4	0	3	2	1	6
Coonamble	0	2	0	0	2	0	2	0	0	2
Walgett	0	1	0	0	1	0	1	0	0	1
Brewarrina	0	1	0	0	1	0	1	0	0	1
Sub-total	2	12	15	8	37	2	15	22	8	47
MONARO (SH 19) (ACT border near CANBERRA to Victorian border near ROCKTON)										
Snowy Mountain Regional	2	5	7	4	18	3	5	12	9	29
Sub-total	2	5	7	4	18	3	5	12	9	29

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
RIVERINA (SH 20) (HUME WEIR to DENILIQUIN)										
Albury	1	1	2	1	5	1	1	3	1	6
Greater Hume	0	0	1	0	1	0	0	1	0	1
Federation	0	0	1	0	1	0	0	2	0	2
Berrigan	0	0	0	0	0	0	0	0	0	0
Edward River	0	0	0	0	0	0	0	0	0	0
Sub-total	1	1	4	1	7	1	1	6	1	9
COBB (SH 21) (MOAMA to Barrier Hwy near WILCANNIA)										
Murray River	0	0	0	2	2	0	0	0	2	2
Edward River	0	1	2	0	3	0	1	2	0	3
Hay	0	0	0	0	0	0	0	0	0	0
Carrathool	0	0	0	0	0	0	0	0	0	0
Central Darling	0	0	1	0	1	0	0	1	0	1
Sub-total	0	1	3	2	6	0	1	3	2	6

[^38]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
Route/Local Government Area	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
SILVER CITY (SH 22) (Sturt Hwy near MILDURA to Queensland border at WARRI GATE)										
Wentworth	1	0	0	3	4	1	0	0	3	4
Unincorporated	0	1	0	1	2	0	1	0	1	2
Broken Hill	0	0	4	0	4	0	0	5	0	5
Sub-total	1	1	4	4	10	1	1	5	4	11
WINDALE-SANDGATE (SH 23) (WINDALE to SANDGATE)										
Lake Macquarie	0	0	0	0	0	0	0	0	0	0
Newcastle	0	7	5	9	21	0	7	7	11	25
Sub-total	0	7	5	9	21	0	7	7	11	25
ILLAWARRA (SH 25) (ALBION PARK to Hume Hwy at Hoddles Crossroads)										
Shellharbour	0	5	6	2	13	0	6	7	2	15
Wingecarribee	0	4	9	3	16	0	4	10	12	26
Sub-total	0	9	15	5	29	0	10	17	14	41

[^39]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
GOLDEN (SH 27) (SINGLETON to DUBBO)										
Singleton	0	4	4	1	9	0	4	7	3	14
Muswellbrook	0	2	0	0	2	0	2	0	0	2
Upper Hunter	0	2	2	0	4	0	2	2	1	5
Warrumbungle	0	3	2	0	5	0	4	3	2	9
Dubbo Regional	1	1	7	2	11	1	1	7	2	11
Sub-total	1	12	15	3	31	1	13	19	8	41
CARNARVON (SH 28) (MOREE to MUNGINDI)										
Moree Plains	1	1	2	1	5	1	1	2	2	6
Sub-total	1	1	2	1	5	1	1	2	2	6
KAMILAROI (SH 29) (WILLOW TREE to BOURKE)										
Liverpool Plains	0	1	0	1	2	0	2	1	1	4
Gunnedah	0	2	0	1	3	0	2	0	1	3
Narrabri	0	2	7	0	9	0	4	7	0	11
Walgett	0	2	0	1	3	0	3	0	1	4
Brewarrina	0	0	0	0	0	0	0	0	0	0
Bourke	0	0	0	0	0	0	0	0	0	0
Sub-total	0	7	7	3	17	0	11	8	3	22

[^40]Table 30: Crashes, casualties, route, local government area, degree of crash, degree of casualty (continued)

Route/Local Government Area	Degree of crash ${ }^{1}$					Degree of casualty ${ }^{2}$				
	FC	SC	MC	OC	Total casualty crashes	K	S	M	O	Total killed \& injured
CENTRAL COAST (SH 30) (SOMERSBY to DOYALSON)										
Central Coast	1	19	28	24	72	1	20	37	31	89
Sub-total	1	19	28	24	72	1	20	37	31	89
GOLD COAST (SH 31) (Pacific Hwy near TWEED HEADS to Queensland border at COOLANGATTA)										
Tweed	0	0	0	0	0	0	0	0	0	0
Sub-total	0	0	0	0	0	0	0	0	0	0
STATE HIGHWAYS:										
TOTAL	87	714	974	717	2,492	95	850	1,344	1,096	3,385

${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

Casualties in 2019

- Road user class
- Age and sex distribution
- Safety devices
- Alcohol and controller casualties
- Alcohol, speeding and fatigue

Table 31: Casualties, road user class, degree of casualty

Road user class	Degree of casualty				
	Killed	Seriously injured	Moderately injured	Minor/Other injured	Total killed \& injured
CONTROLLER					
Driver					
Car	119	1,752	3,869	3,160	8,900
Light truck	30	340	659	356	1,385
Heavy rigid truck	5	33	58	27	123
Articulated truck	10	42	52	33	137
Bus	1	5	25	4	35
Other motor vehicle	1	11	18	22	52
Sub-total	166	2,183	4,681	3,602	10,632
Motorcycle rider	65	996	688	425	2,174
Pedal cycle rider	14	245	278	200	737
Other/Unknown	0	0	1	0	1
CONTROLLER					
Sub-total	245	3,424	5,648	4,227	13,544
PASSENGER					
Car	50	509	667	973	2,199
Light truck	7	83	109	122	321
Heavy rigid truck	2	5	1	5	13
Articulated truck	0	0	6	3	9
Bus	0	3	33	61	97
Other motor vehicle	1	4	1	5	11
Sub-total	60	604	817	1,169	2,650
Motorcycle	3	34	37	27	101
Pedal cycle	0	2	2	0	4
Other/Unknown	0	0	0	0	0
PASSENGER					
Sub-total	63	640	856	1,196	2,755
PEDESTRIAN					
Sub-total	45	542	364	298	1,249
CASUALTIES: TOTAL	353	4,606	6,868	5,721	17,548

Table 32a: Casualties, degree of casualty, road user class, sex, age
DEGREE OF CASUALTY: KILLED

Road user class		Age (years)												Total
	Sex	0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Car driver	M	0	0	5	8	6	8	17	15	10	7	9	0	85
	F	0	0	1	3	3	6	5	3	5	5	3	0	34
	Sub-total ${ }^{1}$	0	0	6	11	9	14	22	18	15	12	12	0	119
Car passenger	M	1	4	3	7	2	1	1	2	0	3	5	0	29
	F	1	1	2	4	1	1	1	2	5	2	1	0	21
	Sub-total ${ }^{1}$	2	5	5	11	3	2	2	4	5	5	6	0	50
Other motor vehicle driver	M	0	0	0	4	4	12	7	5	6	3	5	0	46
	F	0	0	0	0	0	1	0	0	0	0	0	0	1
	Sub-total ${ }^{1}$	0	0	0	4	4	13	7	5	6	3	5	0	47
Other motor vehicle passenger	M	0	0	1	0	2	0	4	0	0	0	0	0	7
	F	0	1	0	0	0	0	0	0	0	1	1	0	3
	Sub-total ${ }^{1}$	0	1	1	0	2	0	4	0	0	1	1	0	10
Motorcycle rider	M	0	0	1	14	6	9	7	12	7	7	0	0	63
	F	0	0	0	0	0	0	1	1	0	0	0	0	2
	Sub-total ${ }^{1}$	0	0	1	14	6	9	8	13	7	7	0	0	65
Motorcycle passenger	M	0	0	0	1	0	1	0	0	0	0	0	0	2
	F	0	0	0	1	0	0	0	0	0	0	0	0	1
	Sub-total ${ }^{1}$	0	0	0	2	0	1	0	0	0	0	0	0	3
Pedal cycle rider/passenger	M	0	0	1	1	0	0	3	2	2	1	1	0	11
	F	0	0	0	1	0	0	0	1	1	0	0	0	3
	Sub-total ${ }^{1}$	0	0	1	2	0	0	3	3	3	1	1	0	14
Pedestrian	M	0	1	0	3	1	1	4	2	7	6	5	0	30
	F	0	0	0	0	1	2	0	1	1	4	6	0	15
	Sub-total ${ }^{1}$	0	1	0	3	2	3	4	3	8	10	11	0	45
CASUALTIES ${ }^{\text {2 }}$	M	1	5	11	38	21	32	43	38	32	27	25	0	273
	F	1	2	3	9	5	10	7	8	12	12	11	0	80
	TOTAL ${ }^{1}$	2	7	14	47	26	42	50	46	44	39	36	0	353

[^41]Table 32b: Casualties, degree of casualty, road user class, sex, age
DEGREE OF CASUALTY: SERIOUSLY INJURED

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Car driver	M	0	3	84	108	47	123	103	102	95	98	89	2	854
	F	0	3	77	87	61	139	119	112	134	106	58	2	898
	Sub-total ${ }^{1}$	0	6	161	195	108	262	222	214	229	204	147	4	1,752
Car passenger	M	5	28	34	32	21	20	9	16	12	8	8	2	195
	F	6	35	36	27	21	31	24	25	41	38	28	2	314
	Sub-total ${ }^{1}$	11	63	70	59	42	51	33	41	53	46	36	4	509
Other motor vehicle driver	M	0	1	43	42	32	69	59	63	35	21	6	2	373
	F	0	0	2	9	5	12	11	8	8	3	0	0	58
	Sub-total ${ }^{1}$	0	1	45	51	37	81	70	71	43	24	6	2	431
Other motor vehicle passenger	M	0	8	9	11	2	6	7	3	4	1	1	0	52
	F	0	4	7	8	4	8	4	2	3	2	1	0	43
	Sub-total ${ }^{1}$	0	12	16	19	6	14	11	5	7	3	2	0	95
Motorcycle rider	M	0	26	92	122	85	171	138	165	97	21	3	1	921
	F	0	1	5	14	6	17	14	13	4	0	0	1	75
	Sub-total ${ }^{1}$	0	27	97	136	91	188	152	178	101	21	3	2	996
Motorcycle passenger	M	0	4	1	3	2	3	0	0	0	1	0	0	14
	F	0	1	1	3	4	3	1	5	2	0	0	0	20
	Sub-total ${ }^{1}$	0	5	2	6	6	6	1	5	2	1	0	0	34
Pedal cycle rider/passenger	M	1	15	8	14	7	36	37	45	26	7	3	0	199
	F	0	5	2	3	7	9	8	10	4	0	0	0	48
	Sub-total ${ }^{1}$	1	20	10	17	14	45	45	55	30	7	3	0	247
Pedestrian	M	4	51	13	22	18	30	29	26	33	31	32	3	292
	F	2	29	5	13	18	22	17	38	37	29	39	1	250
	Sub-total ${ }^{1}$	6	80	18	35	36	52	46	64	70	60	71	4	542
CASUALTIES ${ }^{2}$:	M	10	136	284	354	214	458	382	420	302	188	142	10	2,900
	F	8	78	135	164	126	241	198	213	233	178	126	6	1,706
	TOTAL ${ }^{1}$	18	214	419	518	340	699	580	633	535	366	268	16	4,606

[^42]Table 32c: Casualties, degree of casualty, road user class, sex, age
DEGREE OF CASUALTY: MODERATELY INJURED

Road user class		Age (years)												Total
	Sex	0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Car driver	M	0	13	223	229	167	371	278	223	165	127	83	2	1,881
	F	0	11	247	259	163	380	299	271	182	119	50	7	1,988
	Sub-total ${ }^{1}$	0	24	470	488	330	751	577	494	347	246	133	9	3,869
Car passenger	M	11	61	39	34	22	17	25	9	9	10	4	2	243
	F	16	78	51	43	21	43	36	44	38	33	16	5	424
	Sub-total ${ }^{1}$	27	139	90	77	43	60	61	53	47	43	20	7	667
Other motor vehicle driver	M	0	2	68	74	65	137	123	104	65	20	13	2	673
	F	0	3	14	21	10	35	26	13	14	2	1	0	139
	Sub-total ${ }^{1}$	0	5	82	95	75	172	149	117	79	22	14	2	812
Other motor vehicle passenger	M	2	20	14	14	7	7	4	4	4	0	0	0	76
	F	2	21	7	4	3	11	8	2	9	4	3	0	74
	Sub-total ${ }^{1}$	4	41	21	18	10	18	12	6	13	4	3	0	150
Motorcycle rider	M	0	12	54	106	87	132	90	90	32	10	0	2	615
	F	0	1	0	10	8	17	22	10	5	0	0	0	73
	Sub-total ${ }^{1}$	0	13	54	116	95	149	112	100	37	10	0	2	688
Motorcycle passenger	M	0	5	1	3	0	1	0	0	0	0	0	0	10
	F	0	2	1	3	5	9	2	3	1	1	0	0	27
	Sub-total ${ }^{1}$	0	7	2	6	5	10	2	3	1	1	0	0	37
Pedal cycle rider/passenger	M	0	23	15	26	16	49	42	35	16	7	3	0	232
	F	0	3	0	9	8	12	5	7	1	1	0	2	48
	Sub-total ${ }^{1}$	0	26	15	35	24	61	47	42	17	8	3	2	280
Pedestrian	M	3	40	12	18	17	31	16	19	18	16	6	1	197
	F	2	20	9	18	16	24	13	22	24	10	8	1	167
	Sub-total ${ }^{1}$	5	60	21	36	33	55	29	41	42	26	14	2	364
CASUALTIES ${ }^{\text {2 }}$	M	16	176	426	504	381	745	578	484	310	190	109	9	3,928
	F	20	139	329	367	234	531	411	372	274	170	78	15	2,940
	TOTAL ${ }^{1}$	36	315	755	871	615	1,276	989	856	584	360	187	24	6,868

[^43]Table 32d: Casualties, degree of casualty, road user class, sex, age
DEGREE OF CASUALTY: MINOR/OTHER INJURED

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Car driver	M	0	1	82	139	128	350	250	210	142	56	28	26	1,412
	F	0	5	95	162	156	391	358	297	153	72	29	23	1,741
	Sub-total ${ }^{1}$	0	6	177	301	284	741	608	507	295	128	57	56	3,160
Car passenger	M	10	56	27	29	18	39	29	27	13	13	6	75	342
	F	12	70	38	36	30	82	37	44	48	25	16	119	557
	Sub-total ${ }^{1}$	23	126	65	65	48	121	66	71	61	38	22	267	973
Other motor vehicle driver	M	0	0	22	37	31	78	82	56	34	12	10	10	372
	F	0	0	7	13	7	14	14	7	3	1	0	3	69
	Sub-total ${ }^{1}$	0	0	29	50	38	92	96	63	37	13	10	14	442
Other motor vehicle passenger	M	3	13	12	7	4	8	8	3	7	0	2	10	77
	F	4	9	6	8	3	6	4	8	11	3	1	19	82
	Sub-total ${ }^{1}$	7	22	18	15	7	14	12	11	18	3	3	66	196
Motorcycle rider	M	0	5	25	50	43	59	58	79	32	8	0	14	373
	F	0	0	3	5	9	12	11	5	3	0	0	2	50
	Sub-total ${ }^{1}$	0	5	28	55	52	71	69	84	35	8	0	18	425
Motorcycle passenger	M	0	0	2	4	1	0	0	0	0	0	0	1	8
	F	0	0	0	2	3	3	2	2	2	0	0	3	17
	Sub-total ${ }^{1}$	0	0	2	6	4	3	2	2	2	0	0	6	27
Pedal cycle rider/passenger	M	0	24	7	8	21	21	24	23	8	3	1	10	150
	F	0	3	0	7	7	15	8	4	0	2	0	4	50
	Sub-total ${ }^{1}$	0	27	7	15	28	36	32	27	8	5	1	14	200
Pedestrian	M	0	21	10	8	8	19	25	15	8	10	6	14	144
	F	2	16	6	16	13	23	16	15	16	13	5	13	154
	Sub-total ${ }^{1}$	2	37	16	24	21	42	41	30	24	23	11	27	298
CASUALTIES ${ }^{\text {2 }}$	M	13	120	187	282	254	574	476	413	244	102	53	160	2,878
	F	18	103	155	249	228	546	450	382	236	116	51	186	2,720
	TOTAL ${ }^{1}$	32	223	342	531	482	1,120	926	795	480	218	104	468	5,721

${ }^{1}$ Unknown sex included.
2 Includes unknowns, animal riders and occupants of vehicles such as animal drawn vehicles and trains.

Table 32e: Casualties, degree of casualty, road user class, sex, age
DEGREE OF CASUALTY: ALL CASUALTIES

Road user class	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Car driver	M	0	17	394	484	348	852	648	550	412	288	209	30	4,232
	F	0	19	420	511	383	916	781	683	474	302	140	32	4,661
	Sub-total ${ }^{1}$	0	36	814	995	731	1,768	1,429	1,233	886	590	349	69	8,900
Car passenger	M	27	149	103	102	63	77	64	54	34	34	23	79	809
	F	35	184	127	110	73	157	98	115	132	98	61	126	1,316
	Sub-total ${ }^{1}$	63	333	230	212	136	234	162	169	166	132	84	278	2,199
Other motor vehicle driver	M	0	3	133	157	132	296	271	228	140	56	34	14	1,464
	F	0	3	23	43	22	62	51	28	25	6	1	3	267
	Sub-total ${ }^{1}$	0	6	156	200	154	358	322	256	165	62	35	18	1,732
Other motor vehicle passenger	M	5	41	36	32	15	21	23	10	15	1	3	10	212
	F	6	35	20	20	10	25	16	12	23	10	6	19	202
	Sub-total ${ }^{1}$	11	76	56	52	25	46	39	22	38	11	9	66	451
Motorcycle rider	M	0	43	172	292	221	371	293	346	168	46	3	17	1,972
	F	0	2	8	29	23	46	48	29	12	0	0	3	200
	Sub-total ${ }^{1}$	0	45	180	321	244	417	341	375	180	46	3	22	2,174
Motorcycle passenger	M	0	9	4	11	3	5	0	0	0	1	0	1	34
	F	0	3	2	9	12	15	5	10	5	1	0	3	65
	Sub-total ${ }^{1}$	0	12	6	20	15	20	5	10	5	2	0	6	101
Pedal cycle rider/passenger	M	1	62	31	49	44	106	106	105	52	18	8	10	592
	F	0	11	2	20	22	36	21	22	6	3	0	6	149
	Sub-total ${ }^{1}$	1	73	33	69	66	142	127	127	58	21	8	16	741
Pedestrian	M	7	113	35	51	44	81	74	62	66	63	49	18	663
	F	6	65	20	47	48	71	46	76	78	56	58	15	586
	Sub-total ${ }^{1}$	13	178	55	98	92	152	120	138	144	119	107	33	1,249
CASUALTIES ${ }^{2}$:	M	40	437	908	1,178	870	1,809	1,479	1,355	888	507	329	179	9,979
	F	47	322	622	789	593	1,328	1,066	975	755	476	266	207	7,446
	TOTAL ${ }^{1}$	88	759	1,530	1,967	1,463	3,137	2,545	2,330	1,643	983	595	508	17,548

[^44]Table 33: Road vehicle casualties, road user class, safety device used, degree of casualty

Road user classl safety device used ${ }^{1}$	Degree of casualty				
	Killed	Seriously injured	Moderately injured	Minor/Other injured	Total killed \& injured
Driver					
Adult belt worn	102	1,885	4,154	3,293	9,434
Fitted but not worn	22	49	40	31	142
No restraint fitted	1	6	7	7	21
Unknown	41	243	480	271	1,035
Sub-total	166	2,183	4,681	3,602	10,632
Passenger					
Adult belt worn	42	456	583	666	1,747
Child restraint worn	2	15	42	38	97
Fitted but not worn	7	25	22	26	80
No restraint fitted	1	18	22	23	64
Unknown	8	90	148	416	662
Sub-total	60	604	817	1,169	2,650
Motorcycle rider/passenger					
Open face (jet) helmet worn	11	124	103	66	304
Full face helmet worn	53	785	538	331	1,707
No helmet worn	4	27	13	7	51
Unknown	0	94	71	48	213
Sub-total	68	1,030	725	452	2,275
Pedal cycle rider/passenger					
Helmet worn	12	170	205	142	529
No helmet worn	2	37	23	14	76
Unknown	0	40	52	44	136
Sub-total	14	247	280	200	741
Other/unknown	0	0	1	0	1
All road vehicle casualties					
Device worn	222	3,435	5,625	4,536	13,818
Device not worn	37	162	127	108	434
Unknown	49	467	751	779	2,046
ROAD VEHICLE CASUALTIES: TOTAL ${ }^{2}$	308	4,064	6,504	5,423	16,299

1 Police reporting of safety device usage is often not based on direct observation by police officers and may be reliant upon statements by the casualties themselves or other involved parties.
2 Includes not applicable safety device use.

Table 34a: Motor vehicle controller casualties, degree of casualty, BAC ${ }^{1}$, sex, age DEGREE OF CASUALTY: KILLED

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Legal	M	0	0	4	16	12	25	19	24	19	13	12	0	144
	F	0	0	1	2	3	6	4	2	5	5	3	0	31
	Sub-total ${ }^{2}$	0	0	5	18	15	31	23	26	24	18	15	0	175
. $001-.019^{3}$	M	0	0	0	1	0	0	0	0	0	0	0	0	1
	F	0	0	0	0	0	1	0	0	0	0	0	0	1
	Sub-total ${ }^{2}$	0	0	0	1	0	1	0	0	0	0	0	0	2
. $020-.049^{4}$	M	0	0	1	0	1	0	0	0	0	0	0	0	2
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	1	0	1	0	0	0	0	0	0	0	2
. $050-.079$	M	0	0	0	0	0	0	0	1	0	0	0	0	1
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	0	0	0	0	1	0	0	0	0	1
. $080-.149$	M	0	0	1	2	1	0	2	0	0	1	0	0	7
	F	0	0	0	1	0	0	1	1	0	0	0	0	3
	Sub-total ${ }^{2}$	0	0	1	3	1	0	3	1	0	1	0	0	10
$\geq .150$	M	0	0	0	6	2	4	9	6	1	1	0	0	29
	F	0	0	0	0	0	0	1	1	0	0	0	0	2
	Sub-total ${ }^{2}$	0	0	0	6	2	4	10	7	1	1	0	0	31
Unknown	M	0	0	0	1	0	0	1	1	3	2	2	0	10
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	1	0	0	1	1	3	2	2	0	10
MOTOR VEHICLE	M	0	0	6	26	16	29	31	32	23	17	14	0	194
CONTROLLER	F	0	0	1	3	3	7	6	4	5	5	3	0	37
CASUALTIES:	TOTAL ${ }^{2}$	0	0	7	29	19	36	37	36	28	22	17	0	231

${ }^{1}$ Blood Alcohol Concentration
2 Unknown sex included.
Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 34b: Motor vehicle controller casualties, degree of casualty, BAC ${ }^{1}$, sex, age
DEGREE OF CASUALTY: SERIOUSLY INJURED

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Legal	M	0	17	166	185	106	245	201	230	170	96	77	0	1,493
	F	0	3	64	85	47	114	89	97	108	77	47	1	732
	Sub-total ${ }^{2}$	0	20	230	270	153	359	290	327	278	173	124	1	2,225
. $001-.019^{3}$	M	0	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
. $020-.049^{4}$	M	0	0	2	4	1	0	0	0	0	0	0	0	7
	F	0	0	0	1	0	0	0	0	0	0	0	0	1
	Sub-total ${ }^{2}$	0	0	2	5	1	0	0	0	0	0	0	0	8
. $050-.079$	M	0	0	1	5	4	4	2	2	5	0	0	0	23
	F	0	0	0	0	0	3	0	2	0	0	0	0	5
	Sub-total ${ }^{2}$	0	0	1	5	4	7	2	4	5	0	0	0	28
. $080-.149$	M	0	0	9	14	9	12	20	7	2	0	0	0	73
	F	0	0	0	2	2	2	4	1	1	2	0	0	14
	Sub-total ${ }^{2}$	0	0	9	16	11	14	24	8	3	2	0	0	87
$\geq .150$	M	0	0	2	12	6	17	15	13	2	0	0	0	67
	F	0	0	2	2	3	3	7	0	1	1	0	0	19
	Sub-total ${ }^{2}$	0	0	4	14	9	20	22	13	3	1	0	0	86
Unknown	M	0	13	39	52	38	85	62	78	48	44	21	5	485
	F	0	1	18	20	20	46	44	33	36	29	11	2	260
	Sub-total ${ }^{2}$	0	14	57	72	58	131	106	111	84	73	32	7	745
MOTOR VEHICLE	M	0	30	219	272	164	363	300	330	227	140	98	5	2,148
CONTROLLER	F	0	4	84	110	72	168	144	133	146	109	58	3	1,031
CASUALTIES:	TOTAL ${ }^{2}$	0	34	303	382	236	531	444	463	373	249	156	8	3,179

${ }^{1}$ Blood Alcohol Concentration
2 Unknown sex included.
${ }^{3}$ Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 34c: Motor vehicle controller casualties, degree of casualty, BAC ${ }^{1}$, sex, age
DEGREE OF CASUALTY: MODERATELY INJURED

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Legal	M	0	13	235	251	186	392	309	252	174	101	53	1	1,967
	F	0	11	168	170	106	248	195	179	137	80	25	1	1,320
	Sub-total ${ }^{2}$	0	24	403	421	292	640	504	431	311	181	78	2	3,287
. $001-.019^{3}$	M	0	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
. $020-.049^{4}$	M	0	0	2	2	1	0	0	0	0	0	0	0	5
	F	0	0	1	2	0	0	0	0	0	0	0	0	3
	Sub-total ${ }^{2}$	0	0	3	4	1	0	0	0	0	0	0	0	8
. $050-.079$	M	0	1	1	2	3	8	0	1	2	1	0	0	19
	F	0	0	2	1	1	3	2	0	0	0	0	0	9
	Sub-total ${ }^{2}$	0	1	3	3	4	11	2	1	2	1	0	0	28
. $080-.149$	M	0	1	11	19	13	14	11	5	0	3	0	1	78
	F	0	0	3	4	5	6	4	4	2	0	1	0	29
	Sub-total ${ }^{2}$	0	1	14	23	18	20	15	9	2	3	1	1	107
$\geq .150$	M	0	0	3	14	9	28	16	9	3	2	0	0	84
	F	0	0	2	4	2	12	8	8	2	0	0	0	38
	Sub-total ${ }^{2}$	0	0	5	18	11	40	24	17	5	2	0	0	122
Unknown	M	0	12	93	121	107	198	155	150	83	50	43	4	1,016
	F	0	4	85	109	67	163	138	103	60	41	25	6	801
	Sub-total ${ }^{2}$	0	16	178	230	174	361	293	253	143	91	68	10	1,817
MOTOR VEHICLE	M	0	27	345	409	319	640	491	417	262	157	96	6	3,169
CONTROLLER	F	0	15	261	290	181	432	347	294	201	121	51	7	2,200
CASUALTIES:	TOTAL ${ }^{2}$	0	42	606	699	500	1,072	838	711	463	278	147	13	5,369

1 Blood Alcohol Concentration.
2 Unknown sex included.
${ }^{3}$ Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 34d: Motor vehicle controller casualties, degree of casualty, BAC ${ }^{1}$, sex, age
DEGREE OF CASUALTY: MINOR/OTHER INJURED

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Legal	M	0	3	56	81	56	117	134	103	51	34	18	12	665
	F	0	4	42	45	44	75	81	58	37	18	10	3	417
	Sub-total ${ }^{2}$	0	7	98	126	100	192	215	161	88	52	28	15	1,082
. $001-.019^{3}$	M	0	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
. $020-.049^{4}$	M	0	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sub-total ${ }^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
. $050-.079$	M	0	0	1	3	2	1	3	0	1	0	0	0	11
	F	0	0	0	0	0	1	1	0	1	0	0	0	3
	Sub-total ${ }^{2}$	0	0	1	3	2	2	4	0	2	0	0	0	14
. $080-.149$	M	0	1	5	9	3	6	5	1	2	0	0	1	33
	F	0	0	0	1	2	2	1	1	0	1	0	0	8
	Sub-total ${ }^{2}$	0	1	5	10	5	8	6	2	2	1	0	1	41
$\geq .150$	M	0	0	2	2	7	8	5	2	1	0	0	1	28
	F	0	0	0	3	1	1	8	1	0	0	0	0	14
	Sub-total ${ }^{2}$	0	0	2	5	8	9	13	3	1	0	0	1	42
Unknown	M	0	2	65	131	134	355	243	239	153	42	20	36	1,420
	F	0	1	63	131	125	338	292	249	121	54	19	25	1,418
	Sub-total ${ }^{2}$	0	3	128	262	259	693	535	488	274	96	39	71	2,848
MOTOR VEHICLE	M	0	6	129	226	202	487	390	345	208	76	38	50	2,157
CONTROLLER	F	0	5	105	180	172	417	383	309	159	73	29	28	1,860
CASUALTIES:	TOTAL ${ }^{2}$	0	11	234	406	374	904	773	654	367	149	67	88	4,027

1 Blood Alcohol Concentration.
2 Unknown sex included.
${ }^{3}$ Learner and Provisional Licence holders.
4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 34e: Motor vehicle controller casualties, degree of casualty, BAC 1, sex, age
DEGREE OF CASUALTY: ALL CASUALTIES

Blood Alcohol Concentration ($\mathrm{g} / 100 \mathrm{~mL}$)	Sex	Age (years)												Total
		0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-69	70-79	≥ 80	u/k	
Legal	M	0	33	461	533	360	779	663	609	414	244	160	13	4,269
	F	0	18	275	302	200	443	369	336	287	180	85	5	2,500
	Sub-total ${ }^{2}$	0	51	736	835	560	1,222	1,032	945	701	424	245	18	6,769
. $001-.019^{3}$	M	0	0	0	1	0	0	0	0	0	0	0	0	1
	F	0	0	0	0	0	1	0	0	0	0	0	0	1
	Sub-total ${ }^{2}$	0	0	0	1	0	1	0	0	0	0	0	0	2
. $020-.049^{4}$	M	0	0	5	6	3	0	0	0	0	0	0	0	14
	F	0	0	1	3	0	0	0	0	0	0	0	0	4
	Sub-total ${ }^{2}$	0	0	6	9	3	0	0	0	0	0	0	0	18
. $050-.079$	M	0	1	3	10	9	13	5	4	8	1	0	0	54
	F	0	0	2	1	1	7	3	2	1	0	0	0	17
	Sub-total ${ }^{2}$	0	1	5	11	10	20	8	6	9	1	0	0	71
. $080-.149$	M	0	2	26	44	26	32	38	13	4	4	0	2	191
	F	0	0	3	8	9	10	10	7	3	3	1	0	54
	Sub-total ${ }^{2}$	0	2	29	52	35	42	48	20	7	7	1	2	245
$\geq .150$	M	0	0	7	34	24	57	45	30	7	3	0	1	208
	F	0	0	4	9	6	16	24	10	3	1	0	0	73
	Sub-total ${ }^{2}$	0	0	11	43	30	73	69	40	10	4	0	1	281
Unknown	M	0	27	197	305	279	638	461	468	287	138	86	45	2,931
	F	0	6	166	260	212	547	474	385	217	124	55	33	2,479
	Sub-total ${ }^{2}$	0	33	363	565	491	1,185	935	853	504	262	141	88	5,420
MOTOR VEHICLE	M	0	63	699	933	701	1,519	1,212	1,124	720	390	246	61	7,668
CONTROLLER	F	0	24	451	583	428	1,024	880	740	511	308	141	38	5,128
CASUALTIES:	TOTAL ${ }^{2}$	0	87	1,150	1,516	1,129	2,543	2,092	1,864	1,231	698	387	109	12,806

[^45]Table 35a: Motor vehicle controller casualties, degree of casualty, road user class, blood alcohol concentration
DEGREE OF CASUALTY: KILLED

Road user class	Blood alcohol concentration (g/100mL)							Total
	Legal	.001-.019 ${ }^{1}$.020-.049 ${ }^{2}$.050-. 079	.080-. 149	$\geq .150$	Unknown	
Car driver	93	1	1	0	6	15	3	119
Light truck driver	16	0	0	0	2	9	3	30
Heavy rigid truck driver	4	0	1	0	0	0	0	5
Articulated truck driver	8	0	0	0	0	2	0	10
Bus driver	1	0	0	0	0	0	0	1
Motorcycle rider	52	1	0	1	2	5	4	65
Other motor vehicle driver	1	0	0	0	0	0	0	1
MOTOR VEHICLE								
CONTROLLER								
CASUALTIES: TOTAL	175	2	2	1	10	31	10	231

1 Learner and Provisional Licence holders.
2 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 35b: Motor vehicle controller casualties, degree of casualty, road user class, blood alcohol concentration
 DEGREE OF CASUALTY: SERIOUSLY INJURED

Road user class	Blood alcohol concentration (g/100mL)							Total
	Legal	.001-.019 ${ }^{1}$.020-.049 ${ }^{2}$.050-. 079	.080-. 149	$\geq .150$	Unknown	
Car driver	1,234	0	2	11	47	60	398	1,752
Light truck driver	214	0	3	6	21	18	78	340
Heavy rigid truck driver	26	0	0	0	0	0	7	33
Articulated truck driver	31	0	0	0	1	0	10	42
Bus driver	5	0	0	0	0	0	0	5
Motorcycle rider	712	0	3	11	17	8	245	996
Other motor vehicle driver	3	0	0	0	1	0	7	11
MOTOR VEHICLE								
CONTROLLER								
CASUALTIES: TOTAL	2,225	0	8	28	87	86	745	3,179

[^46]Table 35c: Motor vehicle controller casualties, degree of casualty, road user class, blood alcohol concentration
DEGREE OF CASUALTY: MODERATELY INJURED

Road user class	Blood alcohol concentration (g/100mL)							Total
	Legal	.001-.019 ${ }^{1}$.020-.049 ${ }^{2}$.050-. 079	.080-. 149	$\geq .150$	Unknown	
Car driver	2,369	0	5	23	83	88	1,301	3,869
Light truck driver	403	0	1	4	19	25	207	659
Heavy rigid truck driver	45	0	0	0	0	0	13	58
Articulated truck driver	43	0	0	0	0	0	9	52
Bus driver	18	0	0	0	0	0	7	25
Motorcycle rider	405	0	2	1	5	9	266	688
Other motor vehicle driver	4	0	0	0	0	0	14	18
MOTOR VEHICLE								
CONTROLLER								
CASUALTIES: TOTAL	3,287	0	8	28	107	122	1,817	5,369

1 Learner and Provisional Licence holders.
2 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 35d: Motor vehicle controller casualties, degree of casualty, road user class, blood alcohol concentration
 DEGREE OF CASUALTY: MINOR/OTHER INJURED

Road user class	Blood alcohol concentration (g/100mL)							Total
	Legal	.001-.019 ${ }^{1}$.020-.049 ${ }^{2}$.050-. 079	.080-. 149	$\geq .150$	Unknown	
Car driver	758	0	0	9	25	28	2,340	3,160
Light truck driver	120	0	0	3	12	8	213	356
Heavy rigid truck driver	15	0	0	0	0	0	12	27
Articulated truck driver	17	0	0	0	0	0	16	33
Bus driver	1	0	0	0	0	0	3	4
Motorcycle rider	169	0	0	2	4	6	244	425
Other motor vehicle driver	2	0	0	0	0	0	20	22
MOTOR VEHICLE								
CONTROLLER								
CASUALTIES: TOTAL	1,082	0	0	14	41	42	2,848	4,027

[^47]Table 35e: Motor vehicle controller casualties, degree of casualty, road user class, blood alcohol concentration DEGREE OF CASUALTY: ALL CASUALTIES

Road user class	Blood alcohol concentration (g/100mL)							Total
	Legal	.001-.019 ${ }^{1}$.020-.049 ${ }^{2}$.050-.079	.080-. 149	$\geq .150$	Unknown	
Car driver	4,454	1	8	43	161	191	4,042	8,900
Light truck driver	753	0	4	13	54	60	501	1,385
Heavy rigid truck driver	90	0	1	0	0	0	32	123
Articulated truck driver	99	0	0	0	1	2	35	137
Bus driver	25	0	0	0	0	0	10	35
Motorcycle rider	1,338	1	5	15	28	28	759	2,174
Other motor vehicle driver	10	0	0	0	1	0	41	52
MOTOR VEHICLE								
CONTROLLER								
CASUALTIES: TOTAL	6,769	2	18	71	245	281	5,420	12,806

1 Learner and Provisional Licence holders.
2 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

Table 36a: Casualties, alcohol involvement in crash, degree of casualty

	Degree of casualty				
Alcohol involved in crash	Killed	Seriously injured	Moderately injured	Minor/Other injured	Total killed \& injured
Yes	61	285	381	163	890
No	245	2,995	3,659	1,623	8,522
Unknown	47	1,326	2,828	3,935	8,136
CASUALTIES: Total	$\mathbf{3 5 3}$	$\mathbf{4 , 6 0 6}$	$\mathbf{6 , 8 6 8}$	$\mathbf{5 , 7 2 1}$	$\mathbf{1 7 , 5 4 8}$

Table 36b: Casualties, speeding involvement in crash, degree of casualty

	Degree of casualty				
Speeding involved in crash	Killed	Seriously injured	Moderately injured	Minor/Other injured	Total killed \& injured
Yes	136	1,071	1,180	690	3,077
No or unknown	217	3,535	5,688	5,031	14,471
CASUALTIES: Total	353	$\mathbf{4 , 6 0 6}$	$\mathbf{6 , 8 6 8}$	$\mathbf{5 , 7 2 1}$	$\mathbf{1 7 , 5 4 8}$

Table 36c: Casualties, fatigue involvement in crash, degree of casualty

| | Degree of casualty | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | Killed | Seriously
 injured | Moderately
 injured | Minor/Other
 injured | Total killed
 \& injured |
| Yes | 61 | 506 | 666 | 319 | 1,552 |
| No or unknown | 292 | 4,100 | 6,202 | 5,402 | 15,996 |
| CASUALTIES: Total | $\mathbf{3 5 3}$ | $\mathbf{4 , 6 0 6}$ | $\mathbf{6 , 8 6 8}$ | $\mathbf{5 , 7 2 1}$ | $\mathbf{1 7 , 5 4 8}$ |

[^48]
Reference information

- Population
- Licence holders
- Vehicle registrations

Table 37: New South Wales residents ${ }^{1}$, age, sex

	Sex		
Age (years)	Male	Female	TOTAL
$0-4$	256,331	241,934	498,265
$5-16$	607,800	575,234	$1,183,034$
$17-20$	205,366	191,089	396,455
$21-25$	292,948	277,803	570,751
$26-29$	246,975	244,622	491,597
$30-39$	582,007	589,356	$1,171,363$
$40-49$	511,486	521,753	$1,033,239$
$50-59$	475,897	497,326	973,223
$60-69$	409,402	432,924	842,326
$70-79$	283,148	299,932	583,080
≥ 80	142,461	201,043	343,504
NEW SOUTH WALES RESIDENTS:			$\mathbf{8 , 0 8 6}$
TOTAL	$\mathbf{4 , 0 1 3 , 8 2 1}$	$4,073,016$	

Source - Australian Bureau of Statistics Australian Demographic Statistics.
${ }^{1}$ Preliminary estimated resident population for 30 June 2019 as published in September 2020.

Table 38: Licence holders* as at 30 June 2019, age, sex

	All licence holders		
Age (years)	Male	Female	TOTAL 1
≤ 16	28,925	29,341	58,266
$17-20$	161,931	157,557	319,488
$21-25$	214,778	207,538	422,316
$26-29$	196,451	191,602	388,053
$30-39$	534,957	525,714	$1,060,671$
$40-49$	503,105	494,383	997,503
$50-59$	472,224	455,762	928,063
$60-69$	398,954	376,230	775,230
$70-79$	258,102	228,831	486,952
≥ 80	94,788	74,841	$\mathbf{1 6 9 , 6 3 3}$
LICENCE HOLDERS:			$\mathbf{5 , 6 0 6}$
TOTAL ${ }^{2}$	$\mathbf{2 , 8 6 4 , 2 1 5}$		

Source - Roads and Maritime Services, Licensing Table 2.2.3 Licence holders by age by gender, as at 30 June 2019.

* Including Learner Licence holders

1 Includes cases in which the sex of the licence holder was not recorded
2 Includes cases in which the age of the licence holder was not recorded
Note: This table is counting the number of licence holders, whereas editions prior to 2000 counted the number of licences on issue.

Table 39: Vehicles on register as at 30 June 2019, vehicle type

Vehicle type	Vehicles on register
MOTOR VEHICLES	
Passenger vehicle	$4,489,379$
Rigid truck, van or utility	874,380
Articulated truck	22,419
Bus	14,174
Motorcycle	242,090
Sub-total	$\mathbf{5 , 6 4 2 , 4 4 2}$
OTHER VEHICLES	$\mathbf{4 , 6 2 8}$
Plant	$\mathbf{9 9 7 , 3 3 2}$
Trailer	$\mathbf{1 , 0 0 1 , 9 6 0}$
Sub-total	$\mathbf{6 , 6 4 4 , 4 0 2}$
VEHICLES ON REGISTER:	
TOTAL	

Source - Roads and Maritime Services Registration Table 1.1.1 Registered vehicles by vehicle type, as at 30 June 2019.
Note: As a result of a reclassification of types in the registration database, the passenger vehicle and rigid truck, van or utility categories are not comparable with years prior to 2013.
1 Includes sedans, station wagons, passenger vans, convertibles, coupes and three-wheeled cars.

[^0]: ${ }^{1}$ As at 30 June 2019. Excludes tractors, trailers, caravans, trader plates, plant and equipment. Refer to Table 39.
 ${ }^{2}$ As at 30 June 2019. Refer to note on Table 38.
 ${ }^{3}$ Estimated resident population for 30 June 2019 as published on 24 September 2020. Source - Australian Bureau of Statistics. Refer
 to Table 37.

[^1]: ${ }^{1} 2005$ are based on the date the crash occurred and differs from subsequent years which are based on when the crash was recorded.

[^2]: ${ }^{1} 2005$ are based on the date the crash occurred and differs from subsequent years which are based on when the crash was recorded.

[^3]: ${ }^{1} 2005$ are based on the date the crash occurred and differs from subsequent years which are based on when the crash was recorded.

[^4]: ${ }^{1} 2005$ are based on the date the crash occurred and differs from subsequent years which are based on when the crash was recorded.

[^5]: ${ }^{1}$ As at 30 June 2019. Excludes tractors, trailers, caravans, trader plates, plant and equipment. Refer to Table 39
 ${ }^{2}$ As at 30 June 2019. Refer to note on Table 38.
 ${ }^{3}$ Estimated resident population for 30 June 2019 as published on 24 September 2020. Source - Australian Bureau of Statistics. Refer to Table 37.

[^6]:

[^7]: Notes
 ${ }^{1}$ Underlying Cause of Death Data supplied by Australian Bureau of Statistics. Deaths registered in NSW and cause of death based on ICD Codes - Deaths from all causes (A00 - Y99) and All accidental deaths (V01 - V99, W00 - X59).
 ${ }^{2}$ NSW Centre for Road Safety Crash data
 ${ }^{3}$ Includes deaths where age unknown

[^8]: ${ }^{1} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured TI - Total injured.
 Injury figures for 2005 to 2018 revised following matching with NSW Health data for 2005 to 2019.

[^9]: ${ }^{1} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured TI - Total injured.
 Injury figures for 2005 to 2018 revised following matching with NSW Health data for 2005 to 2019.

[^10]: ${ }^{1}$ K - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured TI - Total injured.
 Injury figures for 2005 to 2018 revised following matching with NSW Health data for 2005 to 2019.
 ${ }^{2}$ Includes pedal cycle passengers.

[^11]: ${ }^{1} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured TI - Total injured.
 Injury figures for 2005 to 2018 revised following matching with NSW Health data for 2005 to 2019.
 ${ }^{3}$ Includes unknowns, animal riders and occupants of vehicles such as animal drawn vehicles and trains.

[^12]: 1 FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash
 ${ }^{2}$ K - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured

[^13]: Note: Vehicles hitting pedestrians are not included in this table.

[^14]: Note: Percentages of all crashes involving those traffic unit types are shown in brackets.
 ${ }_{1}$ Crash categories listed are those involving at least one traffic unit of that type.
 both 'Car crash' and 'Motorcycle crash' categories.

[^15]: Note: Percentages of all crashes involving those traffic unit types are shown in brackets.
 ${ }_{1}$ Crash categories listed are those involving at least one traffic unit of that type.
 both 'Car crash' and 'Motorcycle crash' categories.

[^16]: 1 Unknown sex included.

[^17]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash
 ${ }^{2}$ Includes persons driving whilst disqualified or suspended. 3 Includes P1 and P2 licence types 4 P2 licence type

[^18]: 1 Blood Alcohol Concentration.
 2 Unknown sex included.
 3 Learner and Provisional Licence holders.
 ${ }^{4}$ Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

[^19]: IMPORTANT: The feature categories in this table are not mutually exclusive and must therefore not be added together. For example, a crash at roadworks on a bridge would be counted once in each of the relevant categories.

[^20]: 1 'Metropolitan' is comprised of the Sydney, Newcastle and Wollongong Metropolitan Areas.
 'Country' is comprised of all other areas of the State.

[^21]: ${ }^{1}$ Includes cases of unknown alignment.

[^22]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

[^23]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.

[^24]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^25]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

[^26]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

[^27]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^28]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^29]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^30]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.

[^31]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash

[^32]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^33]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^34]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

[^35]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^36]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} K$ - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

[^37]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^38]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^39]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2}$ K - Killed S - Seriously injured M - Moderately injured O-Minor/Other injured.

[^40]: ${ }^{1}$ FC - Fatal crash SC - Serious injury crash MC - Moderate injury crash OC - Minor/Other injury crash.
 ${ }^{2} \mathrm{~K}$ - Killed S - Seriously injured M - Moderately injured O - Minor/Other injured.

[^41]: ${ }^{1}$ Unknown sex included.
 2 Includes unknowns, animal riders and occupants of vehicles such as animal drawn vehicles and trains.

[^42]: ${ }^{1}$ Unknown sex included.
 2 Includes unknowns, animal riders and occupants of vehicles such as animal drawn vehicles and trains.

[^43]: ${ }^{1}$ Unknown sex included.
 2 Includes unknowns, animal riders and occupants of vehicles such as animal drawn vehicles and trains.

[^44]: ${ }^{1}$ Unknown sex included.
 2 Includes unknowns, animal riders and occupants of vehicles such as animal drawn vehicles and trains.

[^45]: 1 Blood Alcohol Concentration.
 2 Unknown sex included.
 ${ }^{3}$ Learner and Provisional Licence holders.
 4 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

[^46]: 1 Learner and Provisional Licence holders.
 2 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

[^47]: 1 Learner and Provisional Licence holders
 2 Learner and Provisional Licence holders, unlicensed controllers and certain categories of professional controllers.

[^48]: The identification of speeding and fatigue involvement cannot always be determined from police reports of road crashes. The Centre for Road Safety has therefore established criteria for determining if a crash is likely to have involved these factors. The criteria used for this purpose are shown on page 11.

